С 0,15 6
D 0,15 20

Математическое ожидание = $2,90

Оптимальное f=0,31

Среднее геометрическое = 1,0453

Многие выбрали бы белое решение, так как оно имеет большее математи­ческое ожидание. При белом решении вы можете ожидать «в среднем» выиг­рыш в 3 доллара против выигрыша черного решения в 2,90 доллара. Однако выбор черного решения будет более правильным, так как оно дает наибольшее среднее геометрическое. При черном решении можно ожидать «в среднем» выигрыш в 4,53% (1,0453 - 1) против выигрыша белого решения в 1,23%. При реинвестировании черное решение, в среднем, выиграет в три раза больше, чем белое решение! Вы можете возразить, отметив, что мы не реинвестируем по тому же сцена­рию каждый раз, и можно добиться большего, если всегда выбирать наивыс­шее арифметическое математическое ожидание для каждого представленного набора. Мы будем принимать решение, основываясь на большем арифметическом математическом ожидании, только в том случае, если не собираемся реинвести­ровать вообще. Но так как почти всегда деньги, которыми мы рискуем сегодня, будут снова с риском вложены в будущем, а деньги, выигранные или проигран­ные в прошлом, влияют на то, чем мы можем рисковать сегодня (среда геомет­рических следствий), для максимизации долгосрочного роста капитала мы дол­жны принимать решения, исходя из среднего геометрического. Даже если сце­нарии, которые будут представлены завтра, не будут такими же, как сегодня, используя наибольшее среднее геометрическое, мы всегда максимизируем наши решения. Это аналогично процессу зависимых попыток, например игре в «очко». Каждая раздача изменяет вероятности, поэтому оптимальная ставка из­меняется, чтобы максимизировать долгосрочный рост. Помните, чтобы макси­мизировать долгосрочный рост, мы должны рассматривать текущую игру как неограниченную во времени. Другими словами, следует рассматривать каждую от­дельную ставку, как будто она повторяется бесконечное число раз, если необходи­мо максимизировать рост в течение долгой последовательности ставок в несколь­ких играх. Давайте обобщим все вышесказанное: когда результат события оказывает влияние на результат(ы) последующего события(ий), нам следует выбирать наибольшее геометрическое ожидание. В редких случаях, когда результат не влияет на последующие события, следует выбирать наибольшее арифметичес­кое ожидание. Математическое ожидание (арифметическое) не учитывает за­висимость результатов внутри каждого сценария и поэтому может привести к неверному заключению, когда рассматривается реинвестирование в геометри­ческой среде. Использование предложенного метода в планировании сценария поможет вам правильно выбрать сценарий, оценить его результаты и вероятности их осуществления. Этот метод внутренне более консервативен, чем размещение на основе наибольшего арифметического математического ожидания. Урав­нение (3.05) показывает, что среднее геометрическое никогда не может быть больше среднего арифметического. Таким образом, этот метод никогда не бу­дет более рискованным, чем метод наибольшего арифметического математи­ческого ожидания. В асимптотическом смысле (долгосрочном) это не только лучший метод размещения, так как вы получаете наибольший геометричес­кий рост, он также более безопасен, чем размещение по наибольшему ариф­метическому математическому ожиданию, которое неизменно смещает вас вправо от пика кривой f.

Так как реинвестирование почти всегда имеет место в реальной жизни (до того дня, когда вы уйдете на пенсию),[17] то есть вы снова будете использовать деньги, которые использовали сегодня, мы должны принимать решения, ис­ходя из того, что такая возможность представится тысячи раз, для того чтобы максимизировать рост. Мы должны принимать решения таким образом, чтобы максимизировать геометрическое ожидание. Более того, так как результаты большинства событий влияют на результаты последующих событий, нам сле­дует принимать решения и размещать средства, основываясь на максимальном геометрическом ожидании, что может привести к решениям, которые не все­гда очевидны.

Поиск оптимального f по ячеистым данным

Теперь мы рассмотрим поиск оптимального f и его побочных продуктов по ячеистым данным. Этот подход также является гибридом параметрического и эмпирического метода и аналогичен процессу поиска оптимального f по различным сценариям; только на этот раз мы будем использовать среднюю точку ячейки. Для каждой ячейки у нас будет ассоциированная вероятность, рассчитанная как общее число элементов (сделок) в этой ячейке, деленное на общее число элементов (сделок) во всех ячейках. Для каждой ячейки у нас будет ассоциированный результат, рассчитанный по центральной точке ячейки. Например, у нас есть 3 ячейки и 10 сделок. Первую ячейку мы определим для P&L от -1000 долларов до -100 долларов. В этой ячейке будет два элемента. Следу­ющая ячейка предназначена для сделок от -100 до 100 долларов, она вмещает 5 сделок. Наконец, в третью ячейку попадут 3 сделки, которые имеют P&L от 100 до 1000 долларов.

Ячейка Ячейка Сделки Ассоциированная Ассоциированный
вероятность результат
-1000 -100 2 0,2 -550
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату