-100 | 100 | 5 | 0,5 | 0 |
100 | 1000 | 3 | 0,3 | 550 |
Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное f составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + - $100) / /2 =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в примере с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как 550 долларов (средняя точка ячейки), но мы можем разместить в ячейки те же данные следующим образом:
Ячейка | Ячейка | Сделки | Ассоциированная вероятность | Ассоциированный результат |
-1000 | -1000 | 1 | 0,1 | -1000 |
-999 | -100 | 1 | 0,1 | -550 |
-100 | 100 | 5 | 0,5 | 0 |
100 | 1000 | 3 | 0,3 | 550 |
Теперь оптимальное f составляет 0,04, или 1 контракт на каждые 25 000 долларов на счете. Вы видите, насколько приблизителен этот метод? Поэтому, хотя этот метод даст нам оптимальное f для ячеистых данных, надо понимать, что потеря информации при размещении данных в ячейки может сделать резуль таты настолько неточными, что они станут бесполезными. Если бы у нас было больше точек данных и больше ячеек, метод был бы намного точнее. Фактически, если бы у нас было бесконечное количество данных и бесконечное число ячеек, метод был бы абсолютно точным (если бы данные в каждой из ячеек были равны средним точкам соответствующих ячеек, то этот метод также был бы точным). Другой недостаток предлагаемого метода заключается в том, что среднее значение ячейки не обязательно расположено в центре ячейки. В реальности среднее значение элементов в ячейке будет ближе к моде всего распределения, чем к средней точке ячейки. Следовательно, полученная дисперсия будет больше, чем есть на самом деле. Существуют способы корректировки, но и они могут быть неточными. Проблему можно было бы преодолеть, и результаты были бы точными при бесконечном количестве элементов (сделок) и бесконечном количестве ячеек. Если у вас есть достаточно большое количество сделок и достаточно большое количество ячеек, вы можете использовать этот метод с большей уверенностью. Вы также можете провести тесты «что если», изменяя число элементов в различных ячейках, чтобы получить более точное приближение.
Какое оптимальное f лучше?
Мы знаем, что можно найти оптимальное f, используя эмпирический подход, а также используя некоторые параметрические методы как для ячеистых, так и для неячеистых данных. Мы также знаем, что можно привести данные к текущей цене. Какое оптимальное f действительно оптимально — полученное по приведенным или неприведенным данным?
Неприведенное эмпирическое оптимальное f рассчитывается на прошлых данных. Эмпирический метод для нахождения оптимального f, описанный в главе 1, даст оптимальное f, которое реализовало бы наивысший геометрический рост по прошлому потоку результатов. Однако нам надо определить, какое значение оптимального f использовать в будущем (особенно в следующей сделке), учитывая, что у нас нет достоверной информации об исходе следующей сделки. Мы точно не знаем, будет это прибыль (тогда оптимальное f будет 1) или убыток (тогда оптимальное f будет 0). Мы можем выразить результат следующей сделки только