Теперь вы имеете представление как об эмпирических, так и параметри­ческих методах, а также о некоторых гибридных методах поиска оптималь­ного f. В следующей главе мы рассмотрим проблему поиска оптимального f (па­раметрическим способом) для случая, когда одновременно открыто несколько позиций.

Глава 5

Введение в методы управления капиталом с использованием параметрического подхода при одновременной торговле по нескольким позициям

В этой книге уже упоминалось об использовании опционов отдельно или совместно с позицией по базовому инструменту для улучшения торговых результатов. Покупка пут-опциона вместе с длинной позицией по базовому инструменту (или просто покупка колл-оп-циона), а иногда даже продажа (короткая продажа) колл-опциона совместно с длинной позицией по базовому инструменту могут ус­корить асимптотический геометрический рост. Это происходит потому, что очень часто (но не всегда) использование опционов уменьшает дисперсию в большей степени, чем уменьшает арифме­тический средний доход. В результате, исходя из фундаментально­го уравнения торговли, мы получаем большее оценочное TWR. Опционы можно использовать как самостоятельные инструмен­ты, так и вместе с позициями по базовому инструменту для уп­равления риском. В будущем, так как трейдеры все больше кон­центрируются на управлении риском, опционы, вероятно, будут играть еще большую роль. В книге «Формулы управления портфелем» была рассмотрена взаи­мосвязь оптимального/и опционов. * В этой главе мы продолжим начатую дискуссию и обсудим торговлю по нескольким позициям, а также поговорим об опционах. Настоящая глава посвящена еще одному методу поиска оптималь­ного/для немеханических торговых систем. Параметрические ме­тоды, рассмотренные до этого момента, могут использовать те, кто не применяет механические системы. Допустим, вы не исполь­ зуете механическую систему и применяете метод, описанный в главе 4. Если вы захотите рассчитать эксцесс, то сделать это будет не очень легко (по крайней мере, точное значение эксцесса быстро получить, скорее всего, не удастся). Данная глава предназ­начена прежде всего для тех, кто использует немеханические ме­тоды принятия решений об открытии и закрытии позиций. Трей­дерам, использующим эти методы, надо будет рассчитывать не параметры распределения сделок, а значения для волатильности базового инструмента и прогнозируемой цены базового инструмен­та. Трейдеру, не использующему механическую, объективную сис­тему, будет намного легче получить именно эти величины, чем рассчитать параметры для распределения сделок, которые еще не произошли.

Обсуждение оптимального/и его побочных продуктов для тех трейдеров, которые не используют механическую, объективную систему, мы начнем с рассмотрения ситуации, когда одновремен­ но открыто несколько позиций. Означает ли это, что тот, кто использует механические методы для открытия и закрытия по­зиций, не может использовать описанные подходы? Нет. В Главе 6 предложен метод поиска оптимальных, одновременно откры­тых позиций независимо от того, использует трейдер механичес­кую систему или нет. В этой главе рассмотрена ситуация, когда одновременно открыто несколько позиций (с использованием оп­ционов или без), и применяется немеханический подход.

Расчет волатильности

Один из важных параметров, который трейдер, желающий использовать опи­сываемые в этой главе концепции, должен ввести, — это волатильность. Су­ществует два способа определения волатильности. Первый — использование оценки на основе рыночных данных — дает подразумеваемую волатильность. Модели ценообразования опционов, представленные в этой главе, использу­ют волатильность в качестве одного из своих входных параметров для получе­ния справедливой теоретической цены опциона. Подразумеваемая волатиль­ность основывается на предположении, что рыночная цена опциона эквива­лентна его справедливой теоретической цене. Волатильность, которая дает справедливую теоретическую цену, равную рыночной цене, и есть подразуме­ваемая волатильность. Второй метод расчета волатильности основывается на использовании исто­рических данных. Полученная таким образом историческая волатильность оп­ределяется фактической ценой базового инструмента. Хотя волатильность в ка­честве входного данного в модели ценообразования опционов выражается в го­довых процентах, при ее определении используется более короткий временной отрезок, обычно 10-20 дней, а получившийся в результате ответ переводится в годовое значение.

Ниже показан расчет 20-дневной годовой исторической волатильности.

Шаг 1. Разделите сегодняшнее закрытие на предыдущее закрытие ры­ночного дня.

Шаг 2. Возьмите натуральный логарифм частного, полученного в шаге 1. Для примера рассчитаем годовую историческую волатильность японской йены на март 1991 года. При написании даты будем использовать формат (год/месяц/день). Закрытие 910225, равное 74,52, разделим на закрытие 910222, равное 75,52.

74,82 / 75,52 = 0,9907309322 Натуральный логарифм 0,9907309322 равен 0,009312258.

Шаг 3. По истечении 21 дня у вас будет 20 значений для шага 2. Теперь рас­считайте 20-дневную скользящую среднюю значений из шага 2.

Шаг 4. Найдите 20-дневную дисперсию выборки данных из шага 2. Для этого необходима 20-дневная скользящая средняя (см. шаг 3). Далее, для каждого из 20 последних дней вычтем скользящую среднюю из значе­ний шага 2. Теперь возведем в квадрат полученные значения, чтобы преобразовать все отрицательные ответы в положительные. После этого сложим все значения за последние 20 дней. Наконец, разделим найденную сумму на 19 и получим дисперсию по выборке данных за последние 20 дней. 20-дневная дисперсия для 901226 составляет 0,00009. Подобным об­разом вы можете рассчитать 20- дневную дисперсию для любого дня.

Шаг 5. После того как вы определили 20-дневную дисперсию для конкрет­ного дня, необходимо преобразовать ее в 20-дневное стандартное от­клонение. Это легко сделать путем извлечения квадратного корня из дисперсии. Таким образом, для 901226 квадратный корень дисперсии (которая, как было показано, равна 0,00009) даст нам 20-дневное стандартное отклонение 0,009486832981.

Шаг 6. Теперь преобразуем полученные данные в «годовые». Так как мы используем дневные данные и исходим из того, что по йене в году 252 торговых дня (примерно), умножим ответы из шага 5 на квад­ ратный корень 252, то есть на 15,87450787. Для 901226 20-дневное стандартное отклонение по выборке составляет 0,009486832981. Умножив его на 15,87450787, получаем 0,1505988048. Это значе­ние является исторической волатильностью, в нашем случае — 15,06%, и оно может быть использовано в качестве входного зна­чения волатильности в модели ценообразования опционов Блэка-Шоулса.

Следующая таблица показывает шаги, необходимые для нахождения 20-дневной «годовой» исторической волатильности. Заметьте, что промежуточные шаги для определения дисперсии, которые были показаны в предыдущей таблице, сюда не включены.

А В С D 20-дневная средняя Е 20-дневная дисперсия F G
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату