обслуживания множества запросов, предоставляемые микросхемами SDRAM, будут реализованы лишь при достаточно «умном» контроллере памяти. От его предусмотрительности эффективность памяти зависит, пожалуй, больше, чем у простых модулей FPM и EDO DRAM.

Память DDR SDRAM представляет собой дальнейшее развитие SDRAM. Как и следует из названия (Dual Data Rate — удвоенная скорость данных), у микросхем DDR SDRAM данные внутри пакета передаются с удвоенной скоростью — они переключаются по обоим фронтам синхроимпульсов (рис. 7.7). На частоте 100 МГц DDR SDRAM имеет пиковую производительность 200 Мбит/с на вывод, что в составе 8-байтных модулей DIMM дает производительность 1600 Мбайт/с. На высоких тактовых частотах (100 МГц) двойная синхронизация предъявляет очень высокие требования к точности временных диаграмм. Для повышения точности синхронизации предпринят ряд мер.

♦ Сигнал синхронизации микросхемы подается в дифференциальной форме по двум линиям CLK и CLK# (Differential clock inputs). Это позволяет снизить влияние смещения уровней на точность определения момента синхронизации — дифференциальный приемник срабатывает в момент равенства уровней напряжения.

♦ Для синхронизации данных в интерфейс введен новый двунаправленный стробирующий сигнал DQS. Стробы генерируются источником данных: при операциях чтения DQS генерируется микросхемой памяти, при записи — контроллером памяти (чипсетом). При чтении фронты и спады этого сигнала точно центруются в моменты смены данных, приемник должен стробировать данные с небольшой задержкой относительно переключений DQS. При записи фронты и спады центруются точно посередине окна действительности данных и масок DQM.

♦ Для синхронизации DQS с системной тактовой частотой (CLK) микросхемы имеют встроенные схемы DLL (Delay Locked Loop) для автоподстройки задержки сигнала DQS относительно CLK. Эта схема работает наподобие фазовой автоподстройки и способна выполнять синхронизацию (обеспечивать совпадение фронтов DQS и CLK) лишь в некотором ограниченном диапазоне частот синхронизации.

Рис. 7.7. Временны́е диаграммы пакетных циклов DDR SDRAM: a — чтение, CL = 2, длина пакета 4; б — запись, длина пакета 4, данные D1 не записываются

Есть микросхемы DDR SDRAM с возможностью отключения схем DLL; для этого они имеют дополнительный расширенный регистр режима. Отключение DLL необходимо при снижении тактовой частоты (в целях энергосбережения). При отключенной схеме DLL стробы DQS не привязаны к синхросигналу CLK, и у разных микросхем, работающих в одной системе, они будут иметь разные частоты.

В отличие от обычных микросхем SDRAM, у которых данные для записи передаются одновременно с командой, в DDR SDRAM данные для записи (и маски DQM) подаются с задержкой на один такт (write latency). Значение CAS Latency может быть и дробным (CL = 2, 2,5, 3).

В перспективе ожидается появление микросхемы DDR-II SDRAM, в которой обмен будет на четырехкратной частоте синхронизации.

Перед «штатным» использованием микросхем SDRAM их требуется инициализировать. После подачи питания и установления синхросигнала должен быть выполнен предварительный заряд всех банков, после чего запрограммирован регистр режима. Параметр CL (CAS Latency) выбирают, исходя из спецификации микросхем и тактовой частоты так, чтобы задержка, обусловленная CL, была бы минимальной, но не меньше TCAC. В DDR SDRAM возможны и дробные значения CL, так что настройка может быть более тонкой. В DDR SDRAM из-за необходимости настройки DLL программирование сложнее.

По причине существенного отличия интерфейса от традиционной асинхронной памяти микросхемы SDRAM не могут быть установлены в модули SIMM; они применяются в DIMM или устанавливаются прямо на системную (или графическую) плату. Интерфейс DDR SDRAM сильно отличается и от обычных микросхем SDRAM. Возможность использования этих типов памяти определяется чипсетом системной платы. Память SDRAM в конце 90-х годов стала самой распространенной, поддержка DDR SDRAM появилась лишь сравнительно недавно.

7.1.3. Память Rambus DRAM

Память RDRAM (Rambus DRAM) имеет синхронный интерфейс, существенным образом отличающийся от вышеописанного. Запоминающее ядро этой памяти построено на все тех же КМОП- ячейках динамической памяти, но пути повышения производительности интерфейса совершенно иные. Подсистема памяти (ОЗУ) RDRAM состоит из контроллера памяти, канала и собственно микросхем памяти. По сравнению с DDR SDRAM, при той же производительности RDRAM имеет более компактный интерфейс и большую масштабируемость. Разрядность ОЗУ RDRAM (16 байт) не зависит от числа установленных микросхем, а число банков, доступных контроллеру, и объем памяти суммируются по всем микросхемам канала. При этом в канале могут присутствовать микросхемы разной емкости в любых сочетаниях.

Запоминающее ядро микросхем имеет многобанковую организацию — 64- мегабитные микросхемы имеют 8 банков, 256-мегабитные — 32 банка. Каждый банк имеет собственные усилители считывания, благодаря чему в микросхеме может быть активировано несколько банков. Для сокращения числа усилителей применяют и их разделение (совместное использование) парой смежных байт, что накладывает ограничения на их совместную активацию (до активации банка его смежник должен быть заряжен). Разрядность ядра 16 байт — 128 или 144 (с контрольными разрядами) бит. Ядро работает на 1/8 частоты канала, взаимодействие с ядром осуществляется по внутренним сигналам RAS и CAS. В современных RDRAM применяются ячейки памяти с временем доступа 40–53 нс.

Канал RDRAM (Rambus Channel) представляет собой последовательно- параллельную шину. Такая организация позволяет ограничить количество линий интерфейса, что, в свою очередь, позволяет упорядочить разводку проводников ради повышения частоты передачи сигналов. Небольшое количество сигналов дает возможность выровнять задержки распространения сигналов по разным линиям и применить сверхбыстродействующие интерфейсные схемы. Тактовая частота канала — до 400 МГц, стробирование информации осуществляется по обоим фронтам синхросигнала. Таким образом, пропускная способность одной линии составляет 800 Мбит/с. Канал состоит из 30 основных линий с интерфейсом RSL (Rambus System Logic) и 4 вспомогательных линий КМОП, используемых для инициализации микросхем. Структура канала изображена на рис. 7.8. На канале может быть установлено до 32 микросхем, все микросхемы соединяются параллельно. Для того чтобы контроллер мог адресоваться к определенной микросхеме, каждой из них назначается уникальный адрес DEVID. Нумерация микросхем (Device Enumeration) осуществляется в процессе инициализации, который выполняется с использованием вспомогательного последовательного КМОП- интерфейса. Этот интерфейс имеет линии синхронизации SCK, команд CMD, данных SIO.

Рис. 7.8. Память Direct RDRAM

Синхросигнал вводится в канал с «дальнего конца» и распространяется в сторону контроллера по линии СТМ (Clock To Master). По этому сигналу микросхемы памяти стробируют данные, посылаемые к контроллеру (при чтении). Дойдя до контроллера, синхросигнал выходит на линию CFM (Clock From Master) и идет по каналу до терминатора, установленного на конце. По этой линии синхронизируется информация, посылаемая от контроллера к микросхемам памяти. Микросхемы привязывают данные чтения к синхросигналу с помощью встроенных схем DLL (Delay Locked Loop) для автоподстройки задержки сигнала DQS относительно CLK.

Физический уровень интерфейса учитывает волновой характер процессов

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату