распространения сигналов в канале. Интерфейс RSL имеет малый размах сигнала: уровню логический 0 соответствует потенциал терминаторов VTERM = 1,8 В, лог. 1 — потенциал 1,0 В. Передатчики имеют выход типа «открытый сток N-МОП» и активны при передаче логической единицы. Передатчики управляют значением генерируемого тока с тем, чтобы обеспечить требуемый уровень сигнала (падение напряжения на сопротивлении терминатора). Уровень переключения приемника VREF = 1,4 В задается делителем напряжения VTERM. Сигнал синхронизации передается в дифференциальной форме по линиям СТМ, CTMN к контроллеру и по линиям CFM, CFMN от него. Дифференциальная форма снижает погрешность стробирования, вызванную смещением уровней сигналов.
Канал разделен на ROW[2:0], 5-битная шина колонок COL[4:0] и двухбайтная (2×9 бит) шина данных DQA[8:0] и DQB[8:0]. Дополнительный бит байта данных (имеется не у всех микросхем RDRAM) может использоваться для контроля достоверности. По каждой шине информация передается пакетами, занимающими 4 такта (8 интервалов) синхронизации (10 нс). Пакет содержит 8 элементов; пакет строк имеет емкость 24 бит, колонок — 40 бит и данных — 16 байт по 8 или 9 бит.
Высокая производительность шины управления (строк и колонок) позволяет отказаться от пакетных (в терминологии BEDO и SDRAM) передач и упростить протокол шины. Память может одновременно обслуживать до четырех транзакций на полной скорости передачи данных.
ROW для второй транзакции пропущен, поскольку страницу оставили открытой. Транзакция чтения со стороны контроллера представляет собой петлю: он посылает пакеты ROWA и COLC, которые за некоторое время достигают целевой микросхемы и ею обрабатываются за время TCAC. Далее микросхема отвечает пакетом данных, которому для достижения контроллера также требуется некоторое время. Пакетам для путешествий к дальним микросхемам и от них требуется больше времени, чем для путешествий к ближним, и эта разница оказывается большей, чем длительность периода синхронизации. Для того чтобы контроллер получал ответ на транзакцию чтения от любой микросхемы через одно и то же число тактов, у микросхем памяти устанавливают разную задержку данных относительно пакетов COLC. Группы соседних микросхем, у которых программируется одинаковая задержка, называют
Рис. 7.9. Транзакции чтения RDRAM
COLC на TCWD (несколько тактов). Эта задержка соответствует задержке между пакетами COLC и данными при чтении (на стороне контроллера). Задержка записи позволяет сократить вынужденные простои шины данных при переключении с записи на чтение (в SDRAM они равны CAS Latency и длятся 2–3 такта по 10 нс). Контроллер может посылать данные для записи уже в такте, следующим за последними данными предыдущей транзакции чтения. Однако если за записью следует чтение, то на шине данных будет вынужденная пауза в 1–5 тактов в зависимости от длины канала. За это время последние данные записи дойдут от контроллера до самой дальней микросхемы памяти.
Рис. 7.10. Транзакции записи RDRAM
В микросхемах RDRAM применяется механизм D) сначала помещаются в буфер, из которого несколько позже они выгружаются в усилители считывания- записи (sens amp) по явной команде выгрузки (retire) или автоматически. Буфер записи хранит сами данные, а также номер банка и адрес столбца (но не строки). Буферизация записи позволяет контроллеру посылать команду записи на TRTR раньше, чем этого требует параметр TRCD, что повышает коэффициент использования шины.
Память RDRAM отличается высоким энергопотреблением.
SCK, CMD и SIO служит для обмена данными с управляющими регистрами и вывода микросхем из состояний пониженного потребления (
SIO0 и SIO1 у них соединены. В таком состоянии контроллер по шине CMD посылает широковещательную команду на разъединение линий, после чего для него по линии SIO оказывается доступной только ближайшая микросхема канала. Ей назначается адрес (SDEVID) и дается команда на соединение линий, в результате к контроллеру подключается вторая микросхема. Она будет пронумерована очередной командой, заставляющей все доступные ненумерованные микросхемы (то есть именно ее) принять указанный номер. Далее замыкаются ее линии SIO, и этот процесс продолжается до самой дальней микросхемы.
После завершения этого «переучета» включается нормальная синхронизация, и дается время для установления режима схем DLL. После двукратной активации и предварительного заряда каждого банка каждой микросхемы память готова к определению доменов синхронизации и назначению каждой микросхеме соответствующих параметров задержек. Также им должны быть присвоены идентификаторы в канале (DEVID), которые могут и не совпадать со значениями SDEVID (идентификатором на последовательной шине).
Обязательным «фирменным» компонентом ОЗУ на RDRAM является
В соответствии со спецификацией RDRAM в одном канале может быть до трех слотов под RIMM, и их
