банка со следующими параметрами:
1) количество банкоматов: более 100;
2) мощности кассового узла: 20 банкоматов в день, загрузка (выгрузка);
3) существующие возможности инкассационной службы: 20 банкоматов в день. Рассмотрим один из вариантов проведения анализа кассового хозяйства банка с целью определения необходимости внесения изменений в порядок обслуживания банкоматов.
На первом этапе проанализируем долю наличных средств в банкоматах в кассовой позиции банка, чтобы понять целесообразность оптимизации управления денежными потоками в банкоматах банка.
Для большей наглядности представим общую картину в динамике изменения кассовой позиции банка за год. Для этого рассчитаем среднее значение баланса по каждому кассовому счету в валюте. Для удобства приведем все валюты к долларам США. Сгруппируем полученную информацию по месяцам и группам: банкоматы, центральный кассовый узел банка, филиалы по городам, средства в «пути». Полученная картина представлена на рис. 1. На нем видно, что средства в банкоматах составляют 35 % кассовой позиции банка и вопрос о целесообразности оптимизации не вызывает сомнения.
Следующим этапом рассмотрим динамику интегрального баланса в банкоматах и уровень операционной активности в них в течение месяца. Результаты представлены на рис. 2.
На рис. 2 видно, что средний баланс в банкоматах банка в 10 раз превышает среднюю сумму выдачи наличных в день и объем отвлеченных средств в долларовом эквиваленте составляет порядка 19 млн долл. США Очевидно, что, принимая во внимание расходный характер модели финансовых потоков в банкомате невозможно исключить существование отвлеченных средств (если только не инкассировать всю сеть банкоматов ежедневно, что иногда имеет место), но минимизировать отвлеченные средства целесообразно.
Для того чтобы понять природу возникновения отвлеченных средств в конкретной сети банкоматов и оценить эффективность их использования необходимо провести сегментацию популяции банкоматов банка по критерию «период инкассации». Это позволит нам количественно оценить эффективность работы сети банкоматов банка. Сегментацию проводим по данным бухгалтерского учета инкассаций для каждого банкомата за годовой цикл, учитывая, конечно, появление новых банкоматов в сети (результаты сведены в табл. 1).
Итого имеем 137 банкоматов со средней ежедневной суммой наличных около 19 млн долл. США (в эквиваленте). Как видно из таблицы в группу банкоматов с периодом инкассации более 18 дней попадает 94 банкомата и средняя дневная сумма средств, размещенных в них, составляет эквивалент 12 млн долл. США, т. е. 63 %. Эту группу банкоматов примем как объект оптимизации.
Если столь значительная группа банкоматов имеет столь низкую активность, представляется очевидное решение — необходимо уменьшить сумму средств, загружаемых в банкомат. Но при этом необходимо помнить, что тогда среднее количество инкассации банкоматов возрастет. Чтобы оценить влияние этого фактора на производственную нагрузку основного кассового узла банка по загрузке (выгрузке) кассет банкоматов, необходимо проанализировать текущее состояние загрузки мощностей в основном кассовом узле. При этом необходимо заранее выяснить значение максимальных параметров производительности кассового узла, а именно количество обслуживаемых банкоматов в день.
Как уже было сказано выше, максимальная производительность кассового узла составляет 20 банкоматов в день, а именно 20 загрузок (выгрузок). Как видно из рис. 3 и 4 производительность кассового узла еще не достигла своего предела, и мы имеем резерв увеличения количества загрузок (выгрузок) в размере 40 %. Но, учитывая процесс развития сети и неуклонный рост мощностей обработки наличности, будем рассчитывать только на 20 % резерва под оптимизацию загрузки банкоматов.
Рассмотрим еще один, немаловажный показатель эффективности использования сети банкоматов — сумма возвращаемых в кассу средств. Чем больше доля загруженных в банкоматы средств вернулась в Банк, тем меньше эффективность использования банкомата и больше нагрузка на кассовый узел, вынужденный обрабатывать эти средства. При классической организации банка кассовый департамент не вмешивается в процесс планирования загрузки (выгрузки) банкоматов, а выступает только в роли исполнителя полученных от бизнес-подразделений заявок. Поэтому в процессе планирования инкассаций доминирует интерес исключения простоя в работе банкомата по причине недостаточности средств. Чтобы исключить риск простоя банкомата бизнес-подразделения довольно часто заказывают инкассацию банкомата, когда в этом еще нет необходимости. Построим график распределения количества инкассаций за год от доли средств, возвращенных в банк (рис. 5).
Как видим, большая часть банкоматов назначается на инкассацию, не израсходовав и половины загруженный средств, что имеет очень низкую эффективность использования сети банкоматов. Как говорилось выше, это связано в основном с опасениями возникновения репутационных рисков из-за простоя банкоматов. К сожалению, частой причиной преждевременной инкассации банкомата может служить отсутствие купюр в одной из кассет. Особенно это актуально для мультивалютных банкоматов. Очевидно, что возврат 50 % загруженных в банкомат средств не может быть оправдан репутационным риском. Используем параметры проценов возврата средств в Банк и сумму загрузки банкомата как управляющие при проведении оптимизации процесса инкассации и уменьшения суммы «отвлеченныгх» средств.
Целевая функция оптимизации: достижение минимально возможного остатка средств в сети из N- числа банкоматов при обеспечении нормального функционирования сети и при заданной максимально допустимой производительности кассового узла. Иными словами необходимо для каждого банкомата определить минимально допустимый уровень загрузки, обеспечивающий заданный период между инкассациями. Зная период инкассации для каждого банкомата можно спланировать оптимальный график загрузки для всей сети. Для построения модели работы сети воспользуемся простой линейной моделью, конечным элементом в которой является банкомат с определенными из анализа его функционирования параметрами: величина загрузки, средний процент возвращенных в банк средств и средний период инкассации. Конечно, можно значительно усложнить модель, используя статистические модели, но как показывает опыт, и простой линейной модели достаточно, чтобы получить весомый результат. Моделирование проводилось на статистических данных функционирования сети за год. Рассмотрим два очевидных пути повышения эффективности сети банкоматов и опробуем их на модели.
1. Для управления моделью выберем группы банкоматов со сроком инкассации более 35 дней и для каждого банкомата уменьшим величину загрузки. Очевидно, что произойдет сокращение периода инкассации для этих банкоматов, с соответствующим увеличением нагрузки на кассовый узел (табл. 2).