обязательными продуктами окислительно-восстановительных реакций: не все организмы их используют. Некоторые организмы существуют за счет брожения, хотя этот способ не является ни древним, ни энергетически выгодным. Впрочем, есть множество остроумных предположений, какой была в химическом отношении начальная точка развития жизни. Одна из самых популярных (и сомнительных) версий предлагает цианид, который мог образоваться из азота и метана под воздействием ультрафиолетового излучения. Можно ли считать это возможным? В предыдущей главе я упоминал, что кристаллы цирконов не содержат ни намека на то, что в древней атмосфере было много метана. Впрочем, на какой-либо другой планете такой сценарий вполне мог реализоваться. Но если развитие жизни из цианида возможно, то почему это не происходит сейчас? К этому вопросу мы обратимся ниже. (Я думаю, это маловероятно по другим причинам.)

Взглянем на проблему под другим углом: чем хороша окислительно-восстановительная химия дыхания? Похоже, у нее много положительных качеств. Рассмотрим процесс дыхания в более широком смысле, не ограничиваясь тем типом, которым пользуемся мы. Мы отрываем электроны от пищи и прогоняем их по дыхательным цепям к кислороду, но очень важно отметить, что и источники, и конечные акцепторы электронов бывают разными. Сжигание пищи в кислороде позволяет получить большой энергетический выход, но принцип, лежащий в основе дыхания, гораздо шире. Например, необязательно употреблять в пищу именно органику. И водород, и сероводород, и двухвалентное железо также могут выступать донорами электронов. Они способны отдавать свои электроны в дыхательную цепь при условии, что акцептор на другом ее конце будет окислителем достаточно сильным для того, чтобы обеспечить движение этих электронов. Это означает, что бактерии могут “поедать” скалы, минералы и нефтепродукты, используя, по сути, ту же белковую машинерию, которой при дыхании пользуемся мы. В следующий раз, когда увидите на бетонной стене цветное пятно, которым колония бактерий обозначила свое присутствие, – вспомните на секунду о том, что, какими бы странными ни казались эти существа, они живут, пользуясь теми же базовыми механизмами, что и мы.

На кислороде свет клином не сошелся. Многие другие окислители могут выполнять его функцию почти столь же хорошо – например нитрат или нитрит, сульфат или сульфит (список можно продолжить). Все эти окислители (они называются так потому, что, как и кислород, окисляют вещества) способны притягивать электроны из пищи или других источников. В каждом из этих случаев при переносе электронов от донора к акцептору выделяется энергия, которая затем запасается в связях АТФ. Перечисление всех известных пар доноров и акцепторов электронов – окислительно-восстановительных пар, которые используют бактерии и археи, заняло бы несколько страниц. Бактерии умеют не только “питаться” камнями, но еще и “дышать” ими. Эукариотические клетки в сравнении с ними выглядят довольно жалко. Одна-единственная бактерия по метаболическому многообразию не уступает всем эукариотам вместе взятым, включая растения, животных, водоросли, грибы и протисты.

Такая универсальность в использовании доноров и акцепторов обусловлена невысокой реакционноспособностью большинства из них. Ранее мы отметили, что все биохимические реакции происходят самопроизвольно и всегда должны осуществляться в активной среде. Однако если среда чересчур активна, реакции в ней будут идти неконтролируемо и свободной энергии для обеспечения биологических процессов не останется. Так, атмосфера не может содержать фтор – он бы немедленно прореагировал со всем, чем можно, и исчез бы. Но многие вещества могут накапливаться до концентраций, значительно превышающих термодинамически равновесные, потому что они очень медленно вступают в реакции. Кислород, лишь дай ему волю, бурно реагировал бы с органической материей, сжигая все на планете. Однако, к счастью, его молекулы стабильны, и это не дает реализоваться его разрушительному потенциалу: он мирно сосуществует с органикой. Метан и водород реагируют с кислородом еще более бурно (вспомните катастрофу дирижабля “Гинденбург”), но, опять же, наличие у этой реакции кинетического барьера означает, что эти газы могут очень долго сосуществовать в воздухе, находясь при этом в далеком от равновесия состоянии. Это относится и ко многим другим веществам – от сероводорода до нитрата. Их можно вынудить реагировать друг с другом (при этом будет выделяться огромное количество энергии, которая может быть использована живыми клетками), но без подходящего катализатора реакция не пойдет. Жизнь эксплуатирует эти энергетические барьеры и служит более мощным источником энтропии, чем другие процессы. На этом даже основаны некоторые определения, согласно которым жизнь – это генератор энтропии. Хотя жизнь существует именно благодаря наличию кинетических барьеров, ее суть в том, чтобы их преодолевать. Жизнь – это лазейка в энергетическом барьере.

Многие доноры и акцепторы электронов стабильны и растворимы, так что могут входить в клетку и выходить из нее, не причиняя ей вреда. Поэтому активную среду, необходимую в термодинамическом плане, можно безопасно поместить внутрь клетки, прямо под ее мембраны, на которых и осуществляются процессы дыхания. Поэтому окислительно-восстановительные процессы в качестве источника энергии гораздо удобнее, чем тепло, механической энергия, ультрафиолетовое излучение или электрические разряды. Минздрав подтверждает.

Те же самые процессы послужили основой фотосинтеза. Напомню, существует несколько его разновидностей. Во всех случаях[25] энергия солнечного света (в форме фотонов) поглощается пигментом (обычно хлорофиллом), после чего его возбужденный электрон следует по цепи окислительно-восстановительных центров к акцептору (в данном случае это диоксид углерода). Пигмент, лишившийся электрона, благодарно принимает взамен утраченного другой, от ближайшего донора. Таким донором может выступать вода, сероводород или двухвалентный ион железа. Как и при дыхании, здесь не имеет значения, каким именно будет донор электронов. В “аноксигенных” формах фотосинтеза донорами выступают сероводород или железо, а в качестве побочных продуктов образуются отложения серы или ржавчина[26]. При оксигенном фотосинтезе донор гораздо упрямее – это вода, а в виде отходов выделяется кислород. Но важно вот что: фотосинтез всех этих типов, очевидно, произошел от дыхания. И при дыхании, и при фотосинтезе используются одни и те же дыхательные белки, окислительно-восстановительные

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату