архей, поскольку это привело бы к исчезновению естественного протонного градиента. Но вот антипортер, преобразовывающий естественные протонные градиенты в биохимические градиенты натрия, мог оказаться полезен: он увеличивает эффективность использования энергии, а это позволяет клеткам выживать при более низких значениях протонных градиентов. Такие клетки получили возможность распространяться и заселять непригодные для остальных клеток участки гидротермальных источников, что, в свою очередь, способствовало образованию разрозненных популяций. Получив способность выживать в широком диапазоне условий, клетки смогли “заражать” соседние источники и расселяться по всему древнему дну, где в то время было много очагов серпентинизации.
Антипортер, кроме прочего, впервые сделал выгодным активный транспорт ионов. Так мы приходим к различиям пути Вуда – Льюнгдаля для метаногенов и ацетогенов. Судя по этим различиям, активный транспорт ионов независимо возник в двух разных популяциях клеток, отделившихся от общей предковой популяции за счет приобретения антипортера. Напомню, что метаногены и ацетогены принадлежат к двум разным доменам прокариот: археям и бактериям, то есть к двум самым древним ветвям “дерева жизни”. У бактерий и архей очень схожи системы транскрипции и трансляции, рибосомы, синтез белков, но чрезвычайно сильно различаются такие фундаментальные структуры, как клеточные мембраны. Я отметил, что они также различаются деталями пути Вуда – Льюнгдаля, хотя он является для них предковым признаком. Отличие и сходство этого пути могут рассказать очень о многом.
Как и метаногены, ацетогены производят ацетил-кофермент А за счет реакции H2 и CO2 через серию аналогичных последовательных реакций. И метаногены, и ацетогены для того, чтобы обеспечить энергией систему активного транспорта ионов, прибегают к бифуркации (разветвлению) потока электронов. Этот механизм совсем недавно открыт немецким микробиологом Рольфом Тауэром и его коллегами, и это, пожалуй, самый крупный прорыв в биоэнергетике за последние десятилетия. Формально Тауэр уже на пенсии, но результаты его исследований пролили свет на загадку биоэнергетики, над которой ученые десятилетиями ломали головы: как загадочным микробам удается расти, когда это противоречит всем стехиометрическим расчетам. Эволюция, как часто бывает, оказалась хитрее нас. Бифуркацию потока электронов можно сравнить с краткосрочным энергетическим “кредитом”. Как мы отметили, реакция H2 с CO2 суммарно экзергонична (протекает с выделением энергии), но первые ее стадии эндергоничны (требуют затраты энергии). Бифуркация потока электронов – хитроумный механизм, который позволяет направить часть энергии, выделяющейся на поздних, экзергонических стадиях восстановления CO2, на выплату “энергетической задолженности” за протекание ранних, эндергонических стадий[65]. Так как на поздних стадиях выделяется больше энергии, чем требуется для протекания ранних стадий, часть этой энергии может запасаться в форме протонного градиента на мембране (
Загадка кроется в различии путей бифуркации электронов у метаногенов и ацетогенов. Хотя и те, и другие используют весьма сходные железо- никелево-серные белки, многие другие белки и детали механизма бифуркации электронов у них различаются. Как и метаногены, ацетогены запасают энергию, выделяющуюся при реакции H2 с CO2, в форме градиента H+ или Na+ на мембране. В обоих случаях этот градиент расходуется на поддержание углеродного и энергетического метаболизма. И у метаногенов, у ацетогенов есть АТФ-синтаза и энергопреобразующая гидрогеназа, но, в отличие от метаногенов, ацетогены не используют энергопреобразующую гидрогеназу для непосредственного поддержания углеродного метаболизма. Напротив, у некоторых ацетогенов энергопреобразующая гидрогеназа работает в обратном направлении. Ацетогены и метаногены сильно различаются в деталях углеродного метаболизма, и эти детали кажутся настолько фундаментальными, что некоторые специалисты утверждают даже, что сходство метаногенов и ацетогенов есть следствие конвергентной эволюции или горизонтального переноса генов, а не происхождения от общего предка.
Сходство и различия метаногенов и ацетогенов складываются в единую картину, если допустить, что Последний всеобщий предок зависел от природных протонных градиентов. В этом случае ключ к пониманию различий в механизмах создания мембранных градиентов у метаногенов и ацетогенов – это направление естественного потока протонов через энергопреобразующую гидрогеназу. Был ли он направлен внутрь клетки и осуществлял фиксацию углерода – или был обращен наружу через белок, который сейчас функционирует как мембранный насос, выкачивающий из клетки протоны (
В другой популяции клеток, давшей начало метаногенам, был найден альтернативный путь создания ионных градиентов. Клетки в этой популяции, как и их предшественники, восстанавливали ферредоксин, используя энергию протонных градиентов, и при помощи восстановленного ферредоксина осуществляли фиксацию углерода. Но этим клеткам пришлось с нуля изобрести ионный насос. Ну, почти с нуля: они переоборудовали для этой цели другой