белок. Вероятнее всего, они превратили свой антипортер в прямой насос. Осуществить это несложно, но возникла проблема: как снабдить насос энергией? Метаногены приобрели другой тип бифуркации электронов. Они пользовались для этого теми же белками, что и ацетогены, но сообразно своим потребностям построили совершенно иной путь, позволяющий подключить ионный насос. Различия в углеродном и энергетическом метаболизме у метаногенов и ацетогенов связаны с направлением потока протонов через энергопреобразующую гидрогеназу. Можно выбрать: либо внутрь, либо наружу. Метаногены и ацетогены выбрали разные решения.

Рис. 20. Модель эволюции активного транспорта ионов.

Гипотеза происхождения активного транспорта ионов у бактерий и архей, основанная на направлении потока протонов через мембранный белок Ech.

А. В предковом состоянии естественный протонный градиент поддерживает углеродный и энергетический метаболизм посредством энергопреобразующей гидрогеназы (Ech) и АТФ-синтазы. Это путь возможен лишь до тех пор, пока мембрана “проницаема” для протонов.

Б. Клетки метаногенов (предположительно, именно такой образ жизни вели предки архей) также используют Ech и АТФ-синтазу для углеродного и энергетического метаболизма. Однако непроницаемые для протонов мембраны уже не позволяют им использовать естественные протонные градиенты. Поэтому им пришлось найти новые биохимические пути (пунктирные линии) и изобрести новый ионный насос (метилтрансферазу, Mtr) для получения собственных H+– или Na+-градиентов. (Обратите внимание: эта схема получается в результате комбинации схем А и Б на рис. 18.)

В. Ацетогены (предположительно древнейшая ветвь бактерий). Ech стала работать в обратном направлении, выкачивая протоны из клетки за счет энергии окисления восстановленного ферредоксина. Поэтому ацетогенам не потребовалось изобретать новый ионный насос, но пришлось найти новый путь фиксации CO2 – с использованием НАДН и АТФ (пунктирные линии). Этот гипотетический сценарий позволяет объяснить все сходства и различия пути Вуда – Льюнгдаля у метаногенов и ацетогенов.

Когда обе группы клеток тем или иным способом приобрели механизмы активного транспорта ионов, им наконец стало выгодным усовершенствование мембран. На ранних этапах развития мембраны современного типа, обогащенные фосфолипидами, не приносили никакой пользы и даже были бы вредны. Но вскоре после того, как клетки приобрели антипортер и ионные насосы, стало выгодным встраивать в мембраны липиды с глицерольными полярными группами. Такие липиды, по-видимому, независимо появились в двух разных доменах, поэтому археи и бактерии в мембранных липидах используют зеркальные стереоизомеры глицерола (гл. 2).

Теперь, когда клетки приобрели активный транспорт ионов и мембраны современного типа, они смогли покинуть гидротермальные источники и выйти в океан. От общего предка, который жил за счет естественных протонных градиентов источников, отделились две ветви: археи и бактерии. Нет ничего удивительного ни в том, что бактерии и археи приобрели разные клеточные стенки, защищающие в незнакомой среде, ни в том, что они сконструировали различные механизмы репликации ДНК. У бактерий в ходе деления клетки ДНК прикрепляется к мембране за особый участок – репликон[66], что позволяет дочерним клеткам получить по копии родительского генома. Структура задействованных в этом молекулярных комплексов, как и многих других компонентов репликации ДНК, должна хотя бы отчасти зависеть от механизма прикрепления ДНК к мембране. Независимое происхождение клеточных мембран позволяет объяснить различия в репликации ДНК у архей и бактерий. То же самое относится к строению клеточных стенок. Перед постройкой клеточной стенки необходимо транспортировать все предшественники наружу через специальные мембранные поры. То есть синтез клеточной стенки зависит от свойств мембран, а отсюда следует, что у архей и бактерий он должен различаться.

Несмотря на то, что из базовых принципов биоэнергетики не удается вывести необходимость существования фундаментальных различий бактерий и архей, мы можем объяснить, как и по каким причинам они могли возникнуть. Глубокие различия между двумя доменами прокариот не имеют ничего общего с адаптацией к экстремальным условиям, например высокой температуре. Вероятнее всего, эти различия появились в ходе дивергенции предковой популяции клеток, мембраны которых по биоэнергетическим причинам должны быть полупроницаемыми. Хотя дивергенцию архей и бактерий нельзя предсказать исходя из базовых принципов, тот факт, что обе группы используют энергию протонного градиента на мембране, следует из физических законов, которые мы обсуждали в последних двух главах. Щелочные гидротермальные источники – наиболее подходящий кандидат на роль “колыбели жизни” на Земле или где- либо еще во Вселенной. Благодаря гидротермальным источникам клетки стали использовать природные протонные градиенты, в конце концов научившись создавать их самостоятельно. Готов поспорить, что если где-то во Вселенной существуют живые клетки, они также хемиосмотические, а значит, им пришлось столкнуться с теми же проблемами, что и на Земле. Далее мы узнаем, почему из необходимости энергии протонных градиентов следует, что сложная жизнь во Вселенной должна быть редким явлением.

Часть III

О сложности

Глава 5

Появление сложных клеток

Герой Орсона Уэллса в фильме-нуар “Третий человек” (1949) произнес знаменитую фразу: “При герцогах Борджиа в Италии тридцать лет

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату