бушевала война, совершались убийства и кровопролития, но Италия подарила миру Микеланджело, Леонардо да Винчи и Ренессанс. В Швейцарии же пятьсот лет процветали братская любовь, мир и демократия – и что дала миру она? Часы с кукушкой!” Говорят, эту фразу придумал сам Уэллс. Вскоре после выхода фильма в прокат он получил сердитое послание от правительства Швейцарии: “Мы не занимаемся производством часов с кукушкой!” Я не имею ничего ни против Швейцарии, ни против Орсона Уэллса – просто эта фраза хорошо описывает эволюцию. С тех пор, как 1,5-2 млрд лет назад появились сложные эукариотические клетки, мы наблюдаем войны, террор, кровопролитие: оскал природы во всей его ужасающей красе. Но прежде было целых 2 млрд лет, на протяжении которых царили мир, симбиоз и бактериальная любовь (не только платоническая) – но что прокариоты смогли предложить миру? По своей величине и сложности внешнего строения им далеко даже до часов с кукушкой. В отношении морфологической сложности ни бактерии, ни археи не сравнимы даже с одноклеточными эукариотами.
Внутри двух огромных доменов прокариот – бактерий и архей – наблюдается грандиозное генетическое и биохимическое разнообразие. В отношении метаболизма прокариоты кладут эукариот на лопатки: одна-единственная бактерия может похвастаться таким метаболическим разнообразием, какое не наберется и по всему эукариотическому домену. Но по какой-то причине ни бактерии, ни археи не достигли того уровня структурной сложности, который хоть сколько-нибудь приближен к эукариотическому. Клетки прокариот, как правило, в 15 тыс. раз мельче эукариотических (хотя есть выдающиеся исключения, которые мы рассмотрим). Хотя размеры геномов прокариот и эукариот могут совпадать, самый большой бактериальный геном содержит примерно 12 млн пар оснований ДНК. (В геноме человека примерно 3 тыс. млн пар оснований, а некоторые эукариотические геномы достигают 100 тыс. млн пар оснований или даже больше.) Удивительно, что за 4 млрд лет бактерии и археи едва ли изменились. Земля за это время пережила грандиозные перемены. Повышение концентрации кислорода в воздухе и водах океана изменило условия жизни, но бактерии остались неизменными. Периоды глобального оледенения (“Земля- снежок”) должны были поставить экосистемы на грань вымирания – но бактерии остались неизменными. “Кембрийский взрыв” вызвал к жизни множество форм: “испытательных площадок”, на которых прокариотам предстояло опробовать свои орудия. Говоря о бактериях, в первую очередь мы вспоминаем патогены, хотя болезнетворные агенты – лишь верхушка прокариотического айсберга. Но, несмотря на глобальные экологические сдвиги, бактерии остаются решительно верными бактериальной сути. Никогда они не породили ничего настолько крупного и сложно устроенного, как, например, блоха. Бактерии – самые консервативные на свете существа.
В гл. 1 я утверждал, что эти факты лучше объясняются с позиции структурных ограничений[67]. В физическом строении эукариот есть нечто такое, что радикально отличает их и от бактерий, и от архей. Преодолев это структурное ограничение, эукариоты обрели возможность исследовать мир морфологической сложности, и это удалось лишь им. Прокариоты, исследуя возможности метаболизма, находили остроумные решения сложнейших химических задач. А эукариоты, забросив развитие своего “химического интеллекта”, занялись изучением возможностей, которые предоставляют крупный размер и более высокая степень структурной сложности.
Нет ничего удивительного в идее, что существует некий барьер, не позволяющий прокариотам достигнуть эукариотической сложности. Но что представляет собой этот барьер, мнения расходятся. Предлагались разные варианты: от потери клеточной стенки (которая должна обернуться катастрофой для прокариот) до приобретения линейных хромосом. Исчезновение клеточной стенки действительно может стать катастрофой, поскольку без этого жесткого внешнего каркаса клетки быстро набухают и лопаются. Однако эта “смирительная рубашка” физически не позволяет клеткам изменять свою форму, ползать и заглатывать другие клетки путем фагоцитоза. В тех редких случаях, когда потеря клеточной стенки проходила удачно, это открывало возможности для возникновения фагоцитоза. Оксфордский биолог Томас Кавалье-Смит уже долгое время доказывает, что приобретение фагоцитоза – это ключевое событие в эволюции эукариот. Действительно, потеря клеточной стенки необходима для фагоцитоза. Но многие бактерии утратили клеточную стенку, и это не закончилось катастрофой: так называемые бактерии
С линейными хромосомами та же проблема. Прокариотические хромосомы обычно кольцевые, и репликация ДНК начинается в определенной точке кольца (репликон). Однако репликация ДНК часто происходит медленнее, чем клеточное деление, и клетка не сможет поделиться надвое до тех пор, пока ее ДНК не будет полностью скопирована. Это означает, что наличие одного репликона ограничивает максимальный размер бактериальной хромосомы, потому что клетки с хромосомами меньшего размера будут осуществлять репликацию и делиться быстрее, чем клетки, чьи хромосомы длиннее. Если клетка потеряет какие-либо ненужные гены, она сможет делиться быстрее. В итоге бактерии с маленькими хромосомами должны стать преобладающей в популяции формой, особенно если у них есть возможность приобретать путем горизонтального переноса гены, потерянные ранее и вновь ставшие нужными. У эукариот все иначе: обычно у них много линейных хромосом, и каждая содержит много репликонов. Это значит, что у эукариот репликация ДНК идет параллельно, а у бактерий – последовательно. Но и это ограничение вряд ли может объяснить, почему прокариоты не выработали многочисленные линейные хромосомы.