характерны для изначального, предкового состояния, то эукариоты должны быть самыми первыми клетками (прародителями бактерий и архей), которые впоследствии потеряли свои интроны в результате отбора на оптимизацию генома. С точки зрения филогенетики это абсурд. Современные данные полногеномного секвенирования показывают, что эукариоты, вне всяких сомнений, произошли от архейной клетки-хозяина и бактериального эндосимбионта. Самое первое разветвление дерева жизни – расхождение бактерий и архей. Эукариоты возникли гораздо позднее. Это подтверждают и палеонтологическая летопись, и энергетические расчеты.

Но если наличие интронов не было исходным состоянием, почему и как они появились? Похоже, дело в эндосимбионте. Да, у бактерий нет “настоящих интронов”, однако то, что интроны имеют бактериальное происхождение, почти не вызывает сомнений. Если точнее, они произошли от бактериальных генетических паразитов – мобильных элементов, которые получили название самосплайсирующиеся интроны II типа. Мобильные интроны – это фрагменты эгоистичной ДНК, прыгающие с места на место гены, которые копируют сами себя, встраиваясь в геном и снова покидая его. Это очень хорошо приспособленные для выполнения своей задачи машины. Они считываются в РНК как обычные гены, но затем эта РНК оживает, складываясь в сложную структуру, которая функционирует как молекулярные “ножницы”. При помощи этих “ножниц” паразиты вырезаются из длинных РНК-транскриптов, минимизируя урон для клетки-хозяина, и формируют активные комплексы, кодирующие обратную транскриптазу – фермент, способный синтезировать ДНК на матрице РНК. За счет этих комплексов копии интронов снова оказываются в геноме. Интроны, которые самостоятельно встраиваются и вырезаются из бактериального генома, считаются паразитическими генами.

“…На блохе живет блоху кусающая блошка”. Кто бы мог подумать, что геном – это настоящее змеиное логово, что он кишит паразитами. Но так и есть. Вероятно, мобильные интроны довольно древние. Они встречаются во всех трех доменах жизни, и у них, в отличие от вирусов, никогда не возникает необходимости покидать безопасное укрытие – клетку-хозяина: интроны копируются при ее делении. Живые организмы уже научились с ними жить.

У бактерий довольно хорошо получается с ними справляться: правда, неизвестно, как именно. Возможно, просто за счет силы отбора, который действует в крупных популяциях. Бактерии с неудачным расположением интронов, нарушающим правильную работу генов, проигрывают клеткам, у которых интронов нет. Или, может быть, сами интроны, приспосабливаясь, начинают вторгаться лишь в периферические области ДНК, что не должно сильно мешать клетке- хозяину. В отличие от вирусов, которые могут самостоятельно существовать вне клетки-хозяина и поэтому не слишком заботятся о том, чтобы ее не убить, мобильные интроны прекращают свое существование вместе с хозяином и не получают никакой выгоды, причиняя ему вред. Эту область биологии лучше всего рассматривать в терминах экономики (затраты и прибыли, “дилемма заключенного”, теория игр и т. д.). У бактерий и архей мобильные интроны встречаются нечасто, и их никогда не находят внутри самих генов – поэтому технически они вообще не являются интронами. Они накапливаются с низкой плотностью в промежутках между генами. Бактериальный геном обычно содержит не более 30 интронов на 4 тыс. генов. В эукариотических же геномах их число может достигать десятков тысяч. Малое количество интронов у бактерий – отражение установившегося за долгое время баланса, результат отбора, который в течение многих поколений действовал на обе стороны.

Вот такая бактерия вступила в эндосимбиоз с архейной клеткой-хозяином 1,5–2 млрд лет назад. Из современных форм к предку митохондрий наиболее близок один из видов альфа-протеобактерий, а нам известно, что у нынешних альфа-протеобактерий интронов довольно мало. Но как связаны древние генетические паразиты и структура эукариотических генов? Разве только механизмом РНК-ножниц, который обеспечивает сплайсинг мобильных бактериальных интронов, и отчасти логикой. Выше я упоминал сплайсосомы: белковые наномашины, вырезающие интроны из РНК-транскриптов. Они есть и у нас. Сплайсосома состоит не только из белков: ее центральная часть представляет собой все те же РНК-ножницы. Они осуществляют сплайсинг эукариотических интронов при помощи характерного механизма, который выдает происхождение этих “ножниц” от бактериальных самосплайсирующихся интронов (рис. 27).

Рис. 27. Мобильные самосплайсирующиеся интроны и сплайсосома.

Эукариотические гены состоят из экзонов (последовательностей, кодирующих белки) и интронов (встроенных в гены длинных некодирующих последовательностей, которые вырезаются из информационной РНК перед синтезом белка). Интроны, вероятнее всего, произошли от паразитических ДНК-элементов из бактериальных геномов (слева), в результате накопления мутаций выродившихся в инертные последовательности внутри эукариотического генома. Они должны удаляться сплайсосомой (справа). В основе этого предположения лежит механизм сплайсинга. Бактериальный паразит (слева) вырезает себя сам, формируя отдельную интронную последовательность, в которой закодирована обратная транскриптаза: фермент, способный синтезировать ДНК на базе паразитических генов и вставлять их многочисленные копии в бактериальный геном. Эукариотическая сплайсосома (справа) – крупный белковый комплекс. Его работа зависит от каталитической РНК (рибозима), которая осуществляет сплайсинг при помощи того же самого механизма. Это позволяет предположить, что сплайсосома (и эукариотические интроны) произошла от мобильных самосплайсирующихся интронов II типа, занесенных бактериальным эндосимбионтом на ранних этапах эукариотической эволюции.

Так и происходит. Сама по себе нуклеотидная последовательность интронов не содержит ничего, что позволяло бы предположить их бактериальное происхождение. Они не кодируют никаких белков вроде обратной транскриптазы. Они самостоятельно не встраивают и не вырезают себя из ДНК. Они не являются мобильными генетическими паразитами. Они лишь “деклассированные элементы” генома, которые не делают

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату