У этого вопроса есть два аспекта. Первый – практический: может ли это в принципе произойти? Ответ: да, может. Как ни странно, мозаичные мембраны, состоящие из смеси архейных и бактериальных липидов, действительно устойчивы – это известно из экспериментов. Следовательно, возможен постепенный переход от архейных мембран к бактериальным. Теоретически таким заменам ничто не препятствует, но на практике они происходят чрезвычайно редко. И мы подходим ко второй части вопроса: что могло вызвать эту замену? Ответ: эндосимбионт.
В ходе беспорядочного переноса ДНК от эндосимбионтов в геном клетки-хозяина должны были попасть бактериальные гены синтеза липидов. Можно предположить, что эти гены стали экспрессироваться и производить активные ферменты. Впоследствии именно эти ферменты синтезировали липиды бактериального типа для клеточных мембран, но на первых порах этот синтез, вероятно, был неконтролируемым. К чему ведет бесконтрольный синтез липидов? Если он происходит в водной среде, то они собираются в липидные пузырьки. Джефф Эррингтон из Ньюкасла продемонстрировал, что в живых клетках происходит то же самое: у бактерий мутации, увеличивающие синтез липидов, приводят к накоплению внутри клетки мембранных пузырьков, которые окружают геном. Подобно тому, как в холодную погоду бродяги иногда обматываются полиэтиленовыми пакетами, чтобы согреться, так и геномная ДНК обкладывается липидными мешочками, которые создают несовершенный барьер для рибосом, отчасти решающий проблему интронов. Этот барьер и должен быть несовершенным – ведь сквозь сплошную мембрану невозможен транспорт РНК к рибосомам. Дырявый барьер лишь замедлял этот процесс, задерживал РНК, давая сплайсосомам чуть больше времени на вырезание интронов, прежде чем рибосомы примутся за дело. Иными словами, случайное (но предсказуемое) событие предоставило естественному отбору основу для решения проблемы. Этой основой послужила кучка липидных мешочков, собравшихся вокруг генома. В результате же появилась ядерная мембрана, усеянная удивительно сложно устроенными ядерными порами.
Морфология ядерной мембраны хорошо согласуется с этой гипотезой. Липидные мешочки, подобно полиэтиленовым пакетам, можно расплющить. В поперечном сечении сплющенный мешочек состоит из двух близко отстоящих друг от друга параллельных слоев, то есть представляет собой двойную мембрану. Ядерная мембрана устроена так же: множество слитых вместе сплющенных пузырьков с ядерными поровыми комплексами в промежутке. В ходе клеточного деления ядерная мембрана распадается обратно на мелкие пузырьки. Затем они увеличиваются, снова сливаются друг с другом и образуют мембраны ядер, принадлежащих уже двум дочерним клеткам.
Набор генов, кодирующих ядерные структуры, вписывается в эту картину. Если бы ядро появилось
Выше упоминалось, что половое размножение у эукариот появилось очень рано. Еще, если помните, я намекал, что появление секса связано с инвазией интронов. Как именно? Для начала попробуем разобраться с самим понятием.
Настоящий секс, который практикуют эукариоты, предполагает слияние двух гамет (в нашем случае сперматозоида и яйцеклетки) с половиной набора хромосом у каждой. Мы, как и многие другие многоклеточные эукариоты, диплоидны: в наших клетках каждый ген присутствует в двух экземплярах – от отца и от матери. Если точнее, у нас по два экземпляра каждой хромосомы. На картинках в учебниках хромосомы выглядят так, будто это стабильные физические структуры, но это далеко не так. В ходе образования гамет хромосомы
Проблема с возникновением полового процесса состоит не в том, что для этого требовалось выработать множество новых механизмов. В ходе рекомбинации две гомологичные хромосомы конъюгируют, плотно прикрепляясь друг к другу. Затем хромосомы крест-накрест обмениваются некоторыми участками. Конъюгация хромосом и генетическая рекомбинация также осуществляются бактериями и археями в ходе горизонтального переноса генов, но она не всегда взаимна и применяется для того, чтобы починить поврежденные хромосомы или вновь обрести утерянные гены. Применяемые здесь молекулярные механизмы в основном те же. Рекомбинация при половом процессе отличается более широкими масштабами, а также тем, что обмен всегда взаимен. Половое размножение – это взаимная рекомбинация, происходящая по всей длине генома. Если такое и встречается у прокариот, то очень редко.
Рис. 28. Половой процесс и рекомбинация у эукариот.
Приведена упрощенная схема полового цикла: слияние двух гамет, за которым следует двухстадийный мейоз. В ходе мейоза осуществляется рекомбинация, что позволяет получить новые, генетически различные гаметы. Две гаметы, содержащие по одной хромосоме из гомологичной пары (хромосомы различаются генетически), сливаются (