эндосимбионты. Но почему интроны так размножились у предков эукариот, если и бактерии, и археи, как правило, держат их в ежовых рукавицах? Этому есть два объяснения, и, вполне возможно, верны они оба. Согласно первому, предки эукариот – по сути еще прокариоты, точнее
Этот процесс нелегко остановить, он продолжается и по сей день: наши собственные ядерные геномы содержат тысячи обрывков митохондриальной ДНК –
Вторая причина активного размножения интронов на ранних этапах эволюции эукариот – слабое давление отбора. Отчасти это следствие того, что в малой популяции ослабленных клеток конкуренция между особями слабее, чем в огромных популяциях здоровых клеток. Но первые эукариоты обладали поистине небывалой устойчивостью к инвазии интронов. В конце концов, источником этих интронов были эндосимбионты – будущие митохондрии: энергетический рог изобилия и вместе с тем генетическая ноша. Такая генетическая и энергетическая обуза, как интроны, обходится бактериям недешево: маленькие клетки, у которых ДНК немного, воспроизводятся быстрее, чем крупные клетки с избыточным количеством ДНК. Бактерии стремятся оптимизировать свои геномы до минимально возможного размера. У эукариот же сильная асимметрия размеров геномов: их ядерные геномы свободно разрастаются за счет уменьшения геномов эндосимбионтов. Разрастание генома клетки-хозяина не преследует никакой цели – просто отбор не препятствует увеличению размеров генома, как происходит у бактерий. Снижение действия отбора на размер генома – палка о двух концах. Это позволяет эукариотам приобретать тысячи новых генов путем дупликации и рекомбинации – и дает возможность выжить с огромным количеством генетических паразитов. Эти два процесса неразрывно связаны. Эукариотические геномы оказались нашпигованы интронами просто потому, что это стало возможно с энергетической точки зрения.
Судя по всему, первые эукариоты были атакованы генетическими паразитами собственных эндосимбионтов. Как ни странно, сами по себе эти паразиты не представляют большой опасности. Настоящие проблемы начинаются, когда они погибают, оставляя “трупы” – засоряющие геном интроны. Клетке- хозяину приходится их вырезать, иначе происходит синтез бессмысленных белков. Это делают сплайсосомы, произошедшие от молекулярных РНК-ножниц мобильных интронов. Но сплайсосома, несмотря на всю свою внушительность, лишь отчасти решает проблему интронов. Ее недостаток в том, что она очень медленно работает. Даже современным сплайсосомам, за 2 млрд лет достигшим совершенства, требуется несколько минут, чтобы вырезать один интрон. Рибосомы же работают с бешеной скоростью – до 10 аминокислотных остатков в секунду. Им требуется менее 30 секунд, чтобы синтезировать типичный для бактериальных клеток белок длиной около 250 аминокислотных остатков. Если даже сплайсосоме удастся добраться до РНК (что нелегко, поскольку РНК нередко облепляет множество рибосом), это не сможет предотвратить синтез большого количества бесполезных белков, содержащих транслированные последовательности интронов.
Как избежать “катастрофы ошибок”? По мнению Мартина и Кунина – возвести барьер между незрелыми РНК и рибосомами. Именно таким барьером является ядерная мембрана, разграничивающая транскрипцию и трансляцию: внутри ядра с генов считываются кодирующие РНК, а снаружи ядра эти РНК транслируются в белки на рибосомах. Важнее всего вот что: медленный процесс сплайсинга происходит внутри ядра – до взаимодействия с рибосомами. В этом назначение ядра: служить преградой для рибосом. Это объясняет, почему эукариотам необходимо ядро, а прокариоты обходятся без ядра: у них нет проблем с интронами.
Но полностью сформировавшаяся ядерная мембрана не может появиться ниоткуда! Ее развитие должно было занять множество поколений. Тогда почему предки эукариот не вымерли в тот период, когда ядерная мембрана еще не появилась? Да, многие из них действительно вымерли, но загадка может оказаться не такой уж трудной. Ключ – в другом странном явлении, связанном с мембранами. Хотя генетический анализ указывает, что клетка-хозяин была