По теореме Пифагора, если в плоскости с системой декартовых координат (x, y) две точки разделены отрезками dx и dy, то их (интервал в пространстве)2 = dx2 + dy2 + dz2. Это евклидова стереометрия, изучаемая в старших классах. Но Эйнштейн утверждает, что ds2 = (интервал в пространстве)2 – (интервал во времени)2. Эту формулу можно переписать в виде ds2 = dx2 + dy2 + dz2– (интервал во времени)2. Но интервал во времени равен просто dt. Итак, подставив это значение, имеем ds2 = dx2 + dy2 + dz2 – dt2. Так что есть разница между временным измерением t и любым из пространственных измерений (x, или y, или z): перед dt2 стоит знак «минус». В этом минусике и есть вся разница. Именно он отличает время от известных нам обычных пространственных измерений.
Уф! Мы изрядно позанимались арифметикой, но подходим к важному моменту: разнице между временем и пространственными измерениями.
Как вы помните, в самом начале я измерил длину ракеты астронавта, и у меня получилось 540 см. Таким образом, ракета короче, чем кажется астронавту (он считает, что ее длина 9 м). Таким образом, мне его ракета кажется в √1 – (v2/c2) раз короче, чем ему. Наши часы рассогласованы, наши рулетки рассогласованы – что, опять же, подтверждает, что наблюдаемая скорость света всегда равна 30 см/нс. Как могут разниться наши данные о ширине мировой линии его ракеты? Дело в том, что «ломтики» пространства-времени, приходящиеся на эту мировую линию, у нас отличаются. Я измеряю ширину мировой линии в конкретный момент земного времени (ET), а он – в конкретный момент ракетного времени (AT). Я режу его мировую линию горизонтальными ломтиками, как обычную американскую буханку, а он режет ее под углом, как французский хлеб. Другая метафора: допустим, я распилил ствол дерева по горизонтали и говорю: «Ширина ствола – 15 см». Если бы кто-то распилил этот же ствол наискосок, то у него мог бы получиться спил шириной 25 см, хотя ствол был бы тот же самый. Мы с астронавтом просто по-разному режем мировую линию ракеты.
Почему это важно? Рассмотрим крайний случай, когда астронавт летит мимо меня (я на Земле) со скоростью 99,995 % от скорости света; в такой ситуации волшебный коэффициент √1 – (v2/c2) равен 1/100. Я вижу, что астронавт направляется к звезде Бетельгейзе, до которой 500 световых лет. На мой взгляд, он прибудет туда примерно через 500 лет: ведь он летит практически со скоростью света, а до Бетельгейзе 500 световых лет, так что пока он туда доберется, на Земле пройдет 500 лет (ET). Но я увижу, что он состарился всего на 1/100 × 500 лет – на 5 лет. Мне кажется, что его часы идут очень медленно, именно потому, что он летит так быстро. Все его действия кажутся мне медленными – пока он позавтракает, у меня на часах пройдет пятеро суток! Достигнув Бетельгейзе, он действительно состарится всего на 5 лет.
Как он сам воспринимает этот путь? Ему кажется, что он находится в покое, Земля удаляется от него со скоростью 99,995 % от скорости света, а Бетельгейзе – приближается с такой же скоростью. Сначала он видит, как мимо пролетает Земля – вжух! – потом, 5 лет спустя, как мимо пролетает Бетельгейзе – вжух! В принципе, Земля и Бетельгейзе находятся в состоянии покоя друг относительно друга, их мировые линии параллельны. Система Земля + Бетельгейзе для астронавта подобна огромной ракете, на носу которой расположена Земля, а в хвосте – Бетельгейзе. Поскольку эта ракета пролетает мимо него практически со скоростью света, то есть расстояние от Земли до Бетельгейзе преодолевается за 5 лет, астронавт приходит к выводу, что длина ракеты Земля – Бетельгейзе равна 5 световых лет. Именно таким, на его взгляд, должно быть и расстояние от Земли до Бетельгейзе. Расстояние от Земли до Бетельгейзе кажется ему в 100 раз меньше, чем мне. Мои «длины» кажутся ему сжатыми: все предметы кажутся ему в 100 раз короче, чем мне. Коэффициент укорачивания, который он фиксирует, равен √1 – (v2/c2), и именно с таким коэффициентом я наблюдаю замедление его старения. Несомненно, это один из самых впечатляющих результатов специальной теории относительности, прекрасной в своей симметрии и железной логике.
Тот факт, что различные наблюдатели по-разному трактуют одновременность, объясняет «парадокс шеста и сарая». Вообразим, что вышеупомянутый Жак, который путешествовал со скоростью 80 % от скорости света, теперь не астронавт, а прыгун с шестом. Он бежит с девятиметровым шестом, направленным по ходу движения. Когда он будет пробегать мимо меня, мне покажется, что длина этого шеста – всего 540 см. Допустим, у нас есть девятиметровый сарай. Передняя дверь сарая открыта, задняя – закрыта. Жак вбегает в открытую переднюю дверь; когда он добежит до центра сарая, я могу закрыть дверь, и его 540-сантиметровый шест будет заперт в моем девятиметровом сарае. Затем я открываю заднюю дверь и выпускаю Жака. Но как все это выглядит для Жака? Ему должно казаться, что он – в состоянии покоя, держит девятиметровый шест. Он видит, как мой сарай налетает на него со скоростью 80 % от скорости света. По мнению Жака, длина сарая должна составлять 540 см. Находясь в центре сарая, он видит, как его девятиметровый шест высовывается из сарая и через переднюю, и через заднюю дверь. Невозможно закрыть сразу обе двери и запереть его в сарае. Ситуация кажется парадоксальной. Но ответ таков: я одновременно закрываю обе двери, спереди и сзади от шеста, одновременно – с моей точки зрения. Но для Жака два этих события не одновременны. Он иначе «нарезает» пространство-время, под углом, и ему кажется, что я закрываю двери сарая в разные моменты времени, сначала одну, потом другую. Жак не может увидеть, как две амбарные двери закрываются одновременно, но может увидеть, как его шест высовывается одновременно из первой и из второй двери сарая, пока он пробегает сарай с двумя открытыми дверьми.
Слава