Эйнштейн размышлял над следующей проблемой. Одновременно бросим тяжелый и легкий шары. Они упадут на пол одновременно. Галилею об этом было известно. А что сказал бы Ньютон? Он бы отметил, что сила тяготения между шаром и Землей равна F = GmшарMЗЕМЛ/rЗЕМЛ2. Он бы также сказал, что F = Gmшарaшар, так что ускорение aшар равно силе, приложенной к шару, деленной на его массу. Совместив эти уравнения, получим aшар = GMЗЕМЛ/rЗЕМЛ2. Масса шара сокращается. Ускорение шара не зависит от его массы – поэтому и тяжелые, и легкие шары должны падать в одинаковом темпе. Ньютон бы сказал, что тяжелый шар испытывает более сильное тяготение Земли. Но он бы добавил, что такой шар хуже ускоряется, поскольку F = ma, что попросту скомпенсирует увеличенную силу, поэтому ускорение обоих шаров будет совершенно одинаковым. Это изрядное совпадение, позволяющее утверждать, что масса, используемая в формуле гравитации (гравитационная масса), и масса из формулы F = ma (инертная масса) идентичны.
Эйнштейн обдумывал эту проблему иначе. Он размышлял, что бы произошло, окажитесь вы в ускоряющемся космическом корабле, летящем в межзвездном пространстве, где нет гравитации. (Подобно ускоряющемуся звездолету, работающему на аннигиляции вещества и антивещества, о котором Нил рассказывал в главе 10.) Если вы бросите два шара, они просто повиснут в невесомости друг рядом с другом. Затем, поскольку из сопел ракеты вырывается пламя и корабль с ускорением движется вверх, пол корабля с ускорением движется вверх и сталкивается с плавающими в невесомости двумя шарами. Шары, естественно, врезаются в пол в тот самый момент. Они просто плавали в пространстве, но ударились о пол корабля, потому что сам пол подскочил. Просто. В таком случае это не совпадение, что оба шара ударяются о пол одновременно. Вновь представим, что мы бросаем два шара на землю. На этот раз попробуем вообразить, что шары просто плавают в пространстве друг рядом с другом, а пол подскакивает и сталкивается с ними. Люди знали, что на ускоряющемся космическом корабле эффект был бы точно таким, как если бы мы оставались дома на Земле. Но Эйнштейн сказал, что если эксперимент на ускоряющемся космическом корабле протекает точно как при гравитации, значит, это ускорение и есть гравитация. Он назвал это явление принципом эквивалентности. Он назвал эту находку «своей самой счастливой идеей», и осенила она его в 1907 году. Если два явления выглядят одинаково, значит, они должны быть идентичны. Это было очень смелое заключение.
Эйнштейн и ранее пользовался такой логикой. Заряд, движущийся мимо магнита, ускоряется под действием магнитного поля, но стационарный заряд испытывает точно такое же ускорение, когда мимо него движется магнит. Во втором случае, по уравнениям Максвелла, ускорение порождается электрическим полем, которое генерируется изменяющимся магнитным полем. Эйнштейн пришел к выводу, что два этих явления должны быть идентичны и что лишь относительное движение по-настоящему важно. Таким образом, представление об электрическом и магнитном поле как об отдельных сущностях было неверным, и два этих феномена требовалось заменить одним: электромагнитным полем. Аналогично, Эйнштейн обнаружил, что наши представления о пространстве и времени как о самостоятельных сущностях нужно заменить идеей четырехмерного пространства-времени. Зачастую крупные прорывы в науке происходят, когда кто-то догадывается, что два различных явления на самом деле идентичны. Так, Ньютон осознал, что яблоко падает под действием той самой силы, которая удерживает Луну на орбите. Аристотель знал, что яблоко падает на землю под действием силы тяжести, но предполагал, что Луну удерживает на орбите какая-то иная, небесная сила. Ньютон осознал, что два этих явления суть одно и то же.
Эйнштейн искренне верил в свою идею о принципе эквивалентности. Если одновременно бросить легкий и тяжелый шар, то они просто зависнут в свободном падении, но поверхность Земли подскакивает и ударяется о них. Вся беда заключалась в том, что подобное казалось бессмысленным. Как поверхность Земли может повсюду с ускорением двигаться вверх, если Земля при этом не увеличивается? Если бы она раздувалась, как воздушный шарик, то могла бы действительно подскакивать к шарам, которые мы бросаем. Но Земля ни на йоту не увеличивается, поэтому такая идея кажется бессмысленной. Она имела бы право на существование, лишь если бы пространство-время было искривлено и не подчинялось законам евклидовой геометрии.
Давайте поговорим о кривизне. На рис. 19.1 показан глобус. Его поверхность искривлена, и поэтому евклидова планиметрия на ней не работает. Евклид учил, что сумма углов любого треугольника на плоскости равна 180°. Кратчайшая линия между двумя точками, которую можно провести на глобусе, – это дуга большого круга. Большой круг – это круг на глобусе, центр которого совпадает с центром глобуса. Экватор Земли – это большой круг. Любой меридиан – это большой круг. Кратчайшее расстояние между Нью-Йорком и Северным полюсом проходит по меридиану, соединяющему Нью-Йорк и Северный полюс. На глобусе можно построить треугольник, в вершинах которого лежат Северный полюс и две точки на экваторе, причем оба экваториальных угла этого треугольника будут равны 90°. Получится треугольник (состоящий из дуг большого круга), в котором будет три угла по 90°, всего 270°.
Если отправиться с Северного полюса и так и идти, пока не достигнешь экватора, то на экваторе потребуется повернуть на 90°, чтобы взять курс на запад. Затем, достигнув второй точки на экваторе, понадобится вновь повернуть на 90°, чтобы взять курс на север и вернуться на Северный полюс. Прибыв туда, вы увидите, что две стороны треугольника смыкаются на Северном полюсе опять же под углом 90°, поскольку это два меридиана, разделенные на 90°. Вы прошли по треугольнику с тремя прямыми углами, который невозможен по законам евклидовой планиметрии. Поверхность сферы искривлена, поэтому устроена иначе, нежели евклидова планиметрия.
Допустим, мы начертили на глобусе круг, центр которого совпадает с Северным полюсом. Пусть радиус круга, измеренный по поверхности глобуса, равен расстоянию от полюса до экватора (это 1/4 окружности Земли). Окружность такого круга, центр которого совпадает с Северным полюсом, – это экватор. Длина экватора равна длине окружности Земли, поэтому радиус круга, который вы начертите, должен быть равен 1/4 окружности Земли. Следовательно, в данном случае окружность круга вчетверо больше радиуса, то есть превышает радиус не в 2π раз, как положено в евклидовой геометрии, а меньше. Опять же оказывается, что искривленная поверхность сферы не подчиняется законам евклидовой планиметрии.
Рис. 19.1. Треугольник с тремя прямыми углами, построенный на сфере. Снимок предоставлен Дж. Ричардом Готтом
Эйнштейн представлял себе вращающуюся пластинку для фонографа. Если бы на пластинке стоял муравей, то ему пришлось бы крепко упираться