логических вариантов, сколько их может быть в самой проблеме. Любое серьезное решение в промышленности обычно увязывается с такими вещами, как производство, сбыт, финансы, персонал, научно-исследовательские и опытно-конструкторские работы... Именно они определяют размерность проблемы, поскольку решение, по определению, является условием существования. Тогда можно сказать, что в общем размерность любой проблемы, достойной мультинода, есть п- размерность (и можно заметить наперед, что п не менее 5 и не более чем, скажем, 20).

Для п > 1 вторая парадигма оказывается более мощной, чем нам представлялось до сих пор. Вспомним, что общее разнообразие определяется перемножением множества разнообразий. Так, в случае карты, разнообразие по каждому из двух измерений составляло 1000, что дало в результате общее множество 1 000 000. Если бы оно распространилось на трехмерную структуру, то общее множество составило бы тогда 1 000 000 000. В общем, для случаев принятия решения суммарное разнообразие равно произведению разнообразия по одному типичному размеру на число других размеров а средняя длина поиска в соответствии с первой парадигмой составляет половину этого числа. Оно обязано быть гигантским. В случае избранной нами парадигмы, однако, средний поиск составит половину числа разнообразия, умноженного на корень n-й степени из общего разнообразия. Все это простое обобщение примера с 'картой' для n-мерного пространства. Записанная математически длина поиска будет равна:                                                 

(n/2)V1/n.

Сделанный нами вывод в высшей мере важен. Прежде всего расчет подсказывает, что в случае карты, которая, как известно, двумерна, для достижения цели вместо половины миллиона шагов (первая парадигма) потребуется в среднем всего тысяча шагов (вторая парадигма). Это представляет колоссальное увеличение эффективности подготовки решения, поскольку предпринимаемые нами усилия теперь составляют одну пятую процента по сравнению с первым методом. Когда число измерений, учитываемых при решении проблемы, возрастает с двух до п, возрастание эффективности становится астрономическим.

Следовательно, в модели, создаваемой для подготовки сложного решения, должны быть прежде всего учтены п логических измерении, а также обозначены пути взаимной связи между ними. Модель не должна точно указывать последовательность решений, которая будет установлена самим мультинодом, как бы мы не пытались ему ее навязывать. Дело в том, что мультинод, начав работать и придя к некотором предварительным заключениям — сколь угодно 'несущественным',- будет еще определять размерность пространства Так происходит потому, что определение нужной точки в каком-то одном измерении сильно ограничивает возможности мультинода одновременно определять ее местоположение в других. Если это интуитивно не понятно, представим себе еще раз нашу карту. Разыскивая город по одному измерению, мы определяем, что он лежит на определенной широте. При взгляде на карту выясняется, что (возможно) половина ее длины приходится на море. Этот факт ограничивает наш поиск по шкале широты. Как этот факт, существенно усиленный n-мерностыо подготовки решения реальной проблемы, учитывается нашей моделью мультинода, полностью прояснится, когда мы рассмотрим учебный пример.

Мера неопределенности

Сама идея о необходимости измерять неопределенность, связанную с решением, должна казаться большинству людей обескураживающей. Фактически, однако, наука уже создала соответствующую меру, весьма полезную во многих областях научных исследований. Она называется 'энтропией'. К несчастью, само понятие энтропии многих пугает, и поэтому я не стану его раскрывать здесь. Использование этого понятия в интересах управления тщательно разъяснено и продемонстрировано в моей книге Decision and Control ('Решение и управление'), к которой я отсылаю всякого, кто хочет детально и глубоко в этом разобраться. Для целей настоящей главы вполне достаточно определить эту меру как очень полезный инструмент, не переходя к сложным математическим или физическим обоснованиям. (Обо всем этом, однако, пришлось упомянуть, чтобы подготовленный читатель не обвинил меня в изобретении колеса).

Неопределенность, как мы видели, является функцией разнообразия. Разнообразие есть численная мера возможных состояний системы. Решение есть результат выбора одного возможного состояния из всех других. Теперь вернемся к примеру с картой. Из миллиона квадратов (на географической сетке) нам нужно выбрать один. Очевидно, что мера неопределенности, связанная с подобным 'решением', начинается с миллиона и снижается до единицы. Теперь рассмотрим управленческое решение, но будем придерживаться скромной размерности задачи. Пусть у нас будет восемь изделий и восемь станков. Каждое изделие может быть изготовлено на любом станке. Тогда 'решение' можно представить как определение того, какое из восьми изделий и на каком станке должно производиться в настоящее время. Это будет двумерная задача с разнообразием, равным восьми по каждому измерению. Нетрудно видеть, что из 64 вариантов нам предстоит выбрать один. Таким образом наша проблема сводится к снижению разнообразия с 64 до 1.

Далее, можно ввести еще одно измерение. Предположим, что каждое изделие выпускается в восьми вариантах — красное, голубое, зеленое и т.д. Тогда решение, которое мы пытаемся принять, становится задачей выбора одного ответа из 8х8х8 =512 вариантов. Если бы число изделий было намного больше и намного больше была бы размерность проблемы, то число вариантов такого разнообразия стало бы астрономическим. Заметьте причину этого явления — все их численные показатели должны перемножаться. Каждого прошедшего школьный курс математики это обстоятельство сразу же наводит на мысль о возможности использования логарифмов. Если бы мы использовали логарифм разнообразия по каждому измерению, то для определения общего разнообразия - там пришлось бы просто суммировать эти цифры. Но здесь возникает небольшое препятствие: большинство читателей имело дело с логарифмами по основанию 10.

В кибернетике используются логарифмы, вычисляемые по основанию 2. Это обусловлено тем, что исходным положением для решения является выбор между 'да' и 'нет'. Такое бинарное различие (вспомните первую часть) называется битом. Более того, четыре, вещи мы можем различать с помощью двух битов информации. Мать и отец, их сын и дочь могут быть по-разному определены: 'решением', во-первых, кто из них мужчина и кто женщина, и, во-вторых, кто первого и второго поколения. Нам необходимы три бинарных решения, чтобы различить восемь состояний, четыре бита нужны для различения 16 состояний, пять битов — для различения 32 состояний и т. д. Это все, что имеется в виду под фразой 'вычисление логарифма по основанию 2'. При десяти бинарных решениях можно различить 1024 состояния. И если все это еще не звучит достаточно впечатляюще, то следует добавить, что эти величины растут экспоненциально. Сорок бит позволят распознать одну особь в популяции, превышающей примерно триллион (1012.)

Все, что мы теперь делали, сводится к созданию полезного арифметического метода, позволяющего рассчитывать неопределенность. Восемь вариантов, восемь изделий, изготавливаемых на восьми станках, создают 512 вариантов. Такова мера нерешенных проблем, пока не достигнуто заключение относительно того, какой вариант, какого изделия, на каком станке будет выпускаться. Теперь давайте используем наш логарифмический метод. Разнообразие из восьми вариантов по каждому измерению может быть заменено числом бит (а именно логарифмом по основанию 2), требуемых для его выражения. Для такого разнообразия ответом будет три бита (здесь 3 бита: 8/2=4; 4/2=2; 2/2=1). Общее разнообразие, вместо 8х8х8=512 вариантов теперь составит 3+ 3+ 3=9 бит. Нет нужды говорить, что оба этих разнообразия эквивалентны, поскольку 9 бит равны 29 = 512.

Смысл предложенного здесь метода в том, что мы можем создать модель предстоящего решения, основанную не на последовательности приоритетов, и что будем измерять общее разнообразие решений. Тогда любое заключение, полученное мультинодом, будет сокращать разнообразие как общую неопределенность. Более того, исключенное разнообразие будет не просто разнообразием, относящимся к вариантам, непосредственно снятым с рассмотрения, но также к исключенным из разнообразия, относящегося к другим измерениям данной проблемы, теперь признанным и не имеющим к ней отношения как следствия ранее принятого нами решения. Вспомним, что мы разыскивали город, который не только находится на определенной широте, но он и не может находиться в море, а это ограничивает поиск его широты.

Когда мультинод начинает принимать решения, что делается отсечением разнообразия в определенном логическом измерении, он неявно ускоряет уменьшение разнообразия. Возвратимся к примеру

Вы читаете Мозг Фирмы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату