из оператора (А), помогает решить задачу.

Оператор базовых зависимостей (В)

Чтобы получить из известных в этой системе решений логические группы, нам следует начать записывать высказывания, объединяющие наши переменные, начиная с визуального изучения таблицы (В).

Преобразованный оператор логических групп

PM* FSR, (1)

FR* PM, (2)

RD* PFS, (3)

MP* RD, (4)

SD* PF, (5)

S* D. (6)

Теперь удостоверьтесь, что все зависимости из оператора (А) вошли в оператор (С). Заметьте также, что мы уже перестали думать о смысловом содержании буквенных символов. В этом сила манипуляционной алгебры — она облегчает размышления и делает их более строгими.

Конечная цель всех наших процедур — получить возможность записать систему решений в едином высказывании, охватывающем все логические зависимости. В этом будет состоять следующий этап группирования как процесс объединения шести высказываний, вышедших в оператор (С). Сделаем первый шаг в этом направлении. Вызывает недоумение высказывание (6) — в нем только две переменные. Нам следует от него избавиться, введя зависимость от D в С всюду, где она присутствует. Для этого нужно ввести новый символ — обычную точку, имеющую смысл 'и'. Рассмотрение Р или М в высказывании (I) требует рассмотрения F и С и Р; мы уже знаем, что рассмотрение S распространяется и на рассмотрение D, но это неверно в отношении F и R. Переписав (I) и <6) совместно, получим PM * ( FR . S * D ). / Такой оператор требует весьма тщательного изучения, поскольку здесь к понятию группы добавляется понятие гнезда. Пары РМ и FR — группы, но выражение, заключенное в скобки, представляет собой логическое гнездо, так как все оно предопределяется группой РМ. Заметим, что при отсутствии скобок данное высказывание может восприниматься как PM * FR и S * D . Это было бы неточным гнездом. Оно верно но не адекватно.

Теперь, проделав то же самое с высказываниями (3) и (5), запишем пять высказываний (преобразованные помечены буквой а).

Оператор первого гнездования (D)

PM* (FR.S* D),                                           1a)

FR* PM,                                                      2)

RD* (PF.S* D),                                           3a)

MF*RD,                                                       4)

S*D*PF                                                     5a)

То, что произошло теперь с утверждением (5), весьма интересно. Прямая подстановка дает ( S * D . D )* PF . Как дополнительный символ D , так и скобки излишни. Тогда (5a) можно прочесть как ( S * D )* PF или S * ( D * PF ) — оба утверждения верны.

Теперь сразу видно, что высказывание (5a) можно исключить, поскольку оно приняло знакомую нам форму: PF предопределяется высказыванием S * D , которое уже встречалось дважды.

Оператор второго гнездования (Е)

PM*(FR.S*D*PF),                                        1b)

FR*PM,                                                       2)

RD*(PF.S*D*PF),                                        3b)

MF * RD .                                                       4)

Проверка оператора (Е) подсказывает, что (1b) и (3b) можно объединить, поскольку их правые части почти эквивалентны. Чтобы сделать их такими, следует вынести R из (1b) и Р из (3b) и записать эти две переменные в левой части импликации:

(PM* R) (RD* P)] • (F.S* D* PF).

Сделав такой шаг, мы произвели перегруппировку и -перегиездование. Мы поступили так, поскольку нет единственного способа формулирования сложных логических проблем, во всяком случае не более, чем для множества уравнений в математике. В алгебре есть способы-манипулирования, а критерием успеха является соответствие результата. Разность а^2 — b^2 может быть подходящим способом выражения разности площадей двух квадратов, тогда как произведение (а + b ) ( a — b) может стать более подходящим для другого случая. Но оба выражения 'верны'.

Все пока сделано хорошо, поскольку мы избавились от половины первоначальных высказываний. У нас осталось одно полное высказывание, показывающее зависимости в групповой и гнездовой форме, и два первичных высказывания из оператора (С), а именно: (2) и (4). Теперь обратим внимание на них:

FR*PM (2)

MF*RD (4)

Поскольку общим в обеих зависимостях является наличие F в первой группе, было бы, вероятно, желательно записать их в виде F * PMRD (сопоставьте с оператором (А))

F*PD (M*RD) (R*PM),                                                   (2 а )

а затем переписать как

F*[PD.M*(DP*PM)].                                                       (2Ь)

Это выражение можно ввести в правую часть выражения (1с), но мы не можем пренебрегать высказываниями (2) и (4), т. е. M * RD и R * PM , поскольку они ранее фигурировали в левой части выражения (1с). Из множества путей их объединения наиболее удобным кажется следующий: переписать ( PM * R ) как ( PM * R ) ( M * D ), поскольку M * PD , и ( RD * P ) как R * PM )( D * P ), поскольку R * PM . Тогда левая часть выражения (1с) сведется к выражению

[(PM*RPM) (M*D*P)].

Продолжая тем же способом, получаем:

Окончательный оператор (F)

[ (PM*R*PM) (M*D*P) ] * [F* [PD.M*(D.R*PM) ] S*D*Pf].

В окончательном операторе символ F выделен полужирным шрифтом. Это утверждение используется, чтобы показать, что полное перечисление его последствий здесь опущено. Логика, конечно, приведет вновь к операторам, предшествующим F.

Ранее отмечалось наличие многих логически эквивалентных путей написания этого полного выражения. Что мы выиграли от того, что записали одно из них в столь сложной форме? Вопрос вполне правомерен, поскольку общее выражение можно было бы (на языке логики) сильно сжать. Ответ в том, что мы стремились к пониманию системы логических решений и к предоставлению возможности самостоятельно рассмотреть множество подходов к решению, поскольку мультинод может выбирать любой путь, который ему предпочтителен.                                    _

Предположим, что уже почти принято решение, касающееся планов сбыта. Один из восьми рассмотренных при этом планов начинает выглядеть непривлекательным и исключается. Тогда мы обращаемся к оператору (F) слева и — смотрим на D. Согласно первому правилу мы должны рассмотреть влияние этого решения на Р. Дальше мы замечаем, что это же решение влияет на F, и далее рассмотрение должно распространиться на М (фактор Р уже был рассмотрен, а D оказался избыточным). Рассмотрение М включает его влияние на фактор R, в свою очередь влияющий как на Р, так и на М Далее, F означает также обдумывание в отношении фактора S , который прямо влияет на D, о котором и идет речь, а последний влияет на Р и F, о чем мы уже знаем Такова будет интерпретация системы, если она начинается с D. Попытайтесь теперь сформулировать разумные правила для проверки влияния решения относительно D исходя из первой таблицы — оператора (А). Новое обращение к переменным быстро приведет Вас к неразрешимым узлам противоречий. Попытайтесь изобразить все это графически — график быстро станет выглядеть как запутанный котенком клубок ниток. Мы снова оказываемся в плену растущего многообразия.

Вы читаете Мозг Фирмы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату