вариантов восьми изделий, выпускаемых на восьми станках, и предположим, что мы сняли четыре станка. Разнообразие тогда составит 8х8х4 = 256. Иначе, начав привыкать к нашей новой идее, предпочтительнее записать, что первоначальное разнообразие 3+ 3+ 3=9 битов теперь уменьшилось до 3+ 3+ 2=8 битов (= 256). Здесь мы подошли к важному моменту. Мы
На этом примере мы, таким образом, пытаемся изучить действенность нашей второй парадигмы при n -мерной проблеме (хотя в данном случае n < 3). Механизмы, с помощью которых реализуется его 'сила парадигмы', сводятся к объединению логических переменных и размещению этих переменных в разных измерениях. Тогда, хотя мультинод может не рассматривать последовательно свои решения в приемлемом порядке их приоритетов, любое принятое им решение будет, вероятно, отражаться во всей системе и, следовательно, усекать разнообразие с огромной скоростью. Здесь уместно сделать два замечания.
Первое состоит в том, что кажущаяся ошеломляющей, неопределенность при принятии любого решения в реальной жизни с самого начала быстро уменьшается до тех пор, пока не останется очень мало вариантов выбора решений. Действительно, можно доказать математически, что разнообразие по мере принятия промежуточных решений уменьшается экспоненциально.
Второе замечание более интересно с точки зрения психологии управляющих. Отнюдь не ясно (судя по нашим наблюдениям), что управляющие, принадлежащие мультиноду, понимают силу влияния, которое оказывает кажущееся маловажным их промежуточное решение. Следовательно, они недооценивают важность достижения логической последовательности нахождения решений. Вероятно, главный выигрыш, достигаемый описанной здесь процедурой при подготовке реальных решений, состоит в том, что при неограниченной свободе действия мультинод может показать (даже в количественном выражении) влияние того, что с первого взгляда кажется второстепенным, на общую структуру окончательного решения.
Парадигма поиска и мера энтропии — вот все необходимое, что позволяет мультиноду помочь научному решению рассматриваемых проблем. Но, как свидетельствует опыт, люди нелегко понимают подробности работы такого метода на практике. По этой причине мы завершим этот раздел примером. Было бы полезным привести реальный пример использования этого метода на практике (поскольку он показал свое 'могущество'), но, к несчастью, это невозможно — реальные примеры слишком сложны.
Во-первых, они требуют больше исходной информации для понимания происходящего, чем можно привести в книге, и больше алгебраических расчетов, чем допустимо для иллюстрации.
Во-вторых, реальные примеры — фирменный секрет. Нет смысла использовать наш метод, если проблема на самом деле недостаточно серьезна, но по реальному примеру можно установить фирму — его источник.
Более того, сила этого метода именно в том, что он потенциально может показать слабости любого управляющего, которые могут при этом выясниться.
Так происходит потому, что принятие мультинодом неверного решения или принятие решения в логически неверной последовательности очень ярко проявляется. Постепенно уменьшающееся, как было сказано, по экспоненте разнообразие внезапно (в каждом взятом из реальной жизни примере)
Пример
Рассмотрим введение в производство нового товара. Факторы, которые нам придется учитывать, неисчерпывающие, но они типичны для факторов, которые должно учитывать руководство. При определении этих факторов мы окажемся перед необходимостью обозначить шесть измерений логического пространства подготовки решения. Далее, число вариантов по каждой логической переменной выбирается произвольно, но, подчеркиваю, они весьма правдоподобны. Задача состоит в том (как было сказано), чтобы принять решение о новом товаре, но мультинод тотчас же признает, 'по дело здесь значительно сложнее, 'поскольку хотят сотворить чудо'. Решение о производстве нового товара означает точное определение всех особенностей его характеристик, включая замысел его разработки, производства и сбыта. Поэтому паше решение превращается в нечто такое, что требует тщательной проработки. Но мы будем придерживаться мнения, что это решение на самом деле станет достаточно простым, если упростить его и снизить исходную неопределенность до такой степени, чтобы сказать:
Перечислив соответствующие логические переменные и измерив из разнообразие, мы обнаружили, что общая неопределенность, которую предстоит разрешить, составляет 17 бит. Это означает, что нам предстоит принять по крайней мере 17 бинарных решений для того, чтобы уменьшить число возможных вариантов с 131'072 до одного единственного. Это и есть тот многократный и последовательно осуществляемый процесс принятия решений, которым мы пытаемся управлять.
Следующий шаг состоит в том, чтобы определить, влияние одних переменных и» другие. Любое решение относительно заводской стратегии влияет на планы движении денег и, конечно, на кадровую политику (может быть, нам придется закрыть завод, цех); оно скажется на маршрутах разработки (некоторые из приборов нельзя сейчас купить). Однако мы можем решить, что производственные изменения на заводе не скажутся ни на стратегии, ни на планах сбыта, поскольку мы можем, например, но мере изготовления накапливать изделия на складах. Затем мы должны рассмотреть влияние любого решения в отношении переменной Р на F , S и R . По окончании такого анализа относительно каждой логической переменной мы сможем составить полный перечень логических зависимостей, где значком * будем отмечать, что 'любое решение о предшествующем влияет на последующие'. Все это может выглядеть следующим образом:
P*FSR
M*FSDR
F*PMRD
S*PFD
R*PFSM
D*FSP
Cледует заметить, что логические зависимости не обязательно рефлсксивны. В нашем примере любое решение в отношении кадровой политики может отразиться на финансовых потоках, так как, возможно, придется платить лишнее, но примем, по решения относительно финансирован! i не влияют на кадровую политику. (Конечно, может быть и наоборот — наш пример придуман и упрощен.)
Следующий шаг состоит в