«видит» данный объект, и, следовательно, сам объект «видит» окружение на соответствующем уровне энергии.
Таким образом, классический домен (вся наша классическая реальность) — это точки на оси Z на рисунке 3, то есть он составляет незначительную часть совокупной квантовой реальности (квантового домена). При этом любой проявленный (декогерированный) классический объект материального мира (точка на оси Z ) окружен квантовым ореолом или «квантовым гало», как результат частичной и неполной декогеренции. Чем дальше от оси, тем больше квантовая нелокальность, тем слабее «
проявленность
» объекта. Зурек
пишет, что строгий запрет на существование таких состояний снимается. Можно количественно измерять степень неклассичности
состояний, определяя их расстояния от классического домена. Классические проявленные состояния будут тогда окружены «квантовым гало», и его необычные квантовые свойства (типа «шредингеровского
кота») будут возрастать при удалении от оси По словам
Зурека
, такой простой пример декогеренции на сфере Блоха позволяет геометрически наглядно представить три основных момента декогеренции. На схеме можно увидеть:(
i
) классические чистые состояния (два состояния «вверх» и «вниз» в нашем случае) — точки полюсов;(ii) классический домен, состоящий из всех целевых состояний и их смесей, на рисунке это отрезок [—1, +1] на оси Z ;
(
iii
) квантовый домен — остальная часть объема сферы Блоха, который соответствует матрицам плотности более общего
вида. Наглядное представление декомпозиции гильбертова пространства, вызываемой декогеренцией, возможно только в данном простом случае. Но и в общем случае, говорит
Зурек
, когда декогеренция ведет к классичности, это «проявление» имеет сходные черты, и ожидается выполнение пунктов, подобных пунктам (i
) — (iii
). Теперь подытожим вышесказанное и попытаемся более четко сформулировать основные выводы, которые следуют из квантовой теории в отношении Реальности.
Понять, что происходит при эволюции Универсума, помогают общие фундаментальные принципы квантовой теории и простые геометрические модели типа сферы Блоха. Из условия изолированности Универсума сразу же следует вывод о его нелокальности и когерентном состоянии, отсюда и название — «нелокальный источник реальности». На сфере Блоха это видно наглядно — все точки на поверхности шара (то есть на сфере), которые соответствуют замкнутой системе, являются нелокальными состояниями (с разной мерой запутанности между внутренними составными частями системы — отсюда различные классические вероятности). Максимальная запутанность (полная внутренняя нелокальность) — это точки экватора на сфере Блоха.
Замкнутая система может быть полностью локальна только в двух точках на сфере — точках полюса, но в них система сепарабельна — взаимодействия между ее подсистемами нет. Таким образом, если есть взаимодействие между составными частями замкнутой системы — она всегда будет нелокальна, а ее подсистемы будут квантово запутаны между собой. Этот вывод в той или иной формулировке часто встречается в научных публикациях, и ранее я приводил соответствующие цитаты (см. главу 2, раздел 2.5): в случае чистых состояний любые корреляции являются квантовыми — и это строгий результат, следующий из основ квантовой теории. Такое состояние Универсума я иногда называю ЧЗСУ (чистое запутанное состояние Универсума).
Весь Мир в своей совокупности (ЧЗСУ) нелокален — это Пустота, его количественную характеристику можно описать только в терминах квантовой информации (кроме нее, в этом состоянии ничего нет). Никакие физические величины здесь не помогут: в данном состоянии нет ни частиц, ни физических полей и т. д. Пустота здесь своеобразная — это не вакуум, или пустое место, которое занимает некоторый объем. Нет самого объема, нет даже пространства-времени как неких внешних, якобы абсолютных категорий Бытия. Все эти привычные для нас физические представления существуют только в классическом домене (на оси Z ) и имеют смысл лишь с точки зрения подсистем, взаимодействие которых сопровождается декогеренцией. Причем классическая реальность и материальный мир могут полностью «раствориться». Если вектор состояния Универсума находится на экваторе сферы Блоха, то он проецируется в нуль, в точку начала координат. Это значит, что в этом состоянии материального мира вообще не существует — есть одна только «первичная информация». При движении вектора от экватора к полюсу классический мир возникает как бы «из ничего» — для классических объектов это будет выглядеть, как переход через точку сингулярности, они возникают «из небытия».
Квантовая теория красиво решает проблему «запредельных» состояний Вселенной в известной концепции Большого Взрыва, когда встает вопрос о том, что же было с материей до этого момента. Над ним давно ломают голову классические физики, пытающиеся представить, что было с реальностью до начала Большого Взрыва, в
досингулярном
состоянии Вселенной. В квантовой теории такого вопроса не возникает — никаких «досингулярных
» состояний просто нет, эволюция вектора состояния Универсума непрерывна. Я бы сказал, что ЧЗСУ — это состояние надсингулярное
. Сингулярности возможны для подсистем: например, возникновение классической реальности будет являться сингулярностью с точки зрения классических тел, но для ЧЗСУ это будет лишь небольшое «шевеление» амплитуд в его векторе состояния. Простой пример — двусоставная система (две подсистемы А и В ). А и В будут периодически проявляться при взаимной декогеренции в локальном виде (как бы появляются объекты классической реальности) и «исчезать» (рекогеренция) в нелокальном состоянии. Когда одна из амплитуд равна единице (остальные нули), подсистемы a = d = 1/v2 (b = c = 0) и квантовая запутанность при этом максимальна.
Если взять ее вектор состояния в самом общем виде |?n = a |00n + b |01n + c |10n + d |11n с обычным условием нормировки для амплитуд |a |2 + | b |2 + |c |2 + | d |2 = 1, то непрерывное изменение этих амплитуд (для наглядности их можно задать тригонометрическими функциями) будет приводить к
Подсистемы сингулярностям
с точки зрения подсистем. будут иметь максимальную
будут зависеть друг от друга. Затем они снова «растворяются» в нелокальном состоянии и полностью перестают существовать в виде локальных элементов, например, когда проявленность
и не Как показал A и B отлична от нуля в любом случае, если нарушается равенство ad = bc и мера квантовой запутанности (в терминах concurrence , введенной, как я уже говорил, самим С = 2 |ad — bc |.
Вуттерс[102]
, в такой системе запутанность между подсистемами Вуттерсом
, и сейчас наиболее широко используемой) равна В тот момент, когда подсистемы начинают
Вы читаете Квантовая магия