Press).

97

For a promising direction of research in this regard, see the proposal that a wide range of animal coat patterns may be generable from a single, simple mathematical equation (based on the work of Alan Turing): Murray, J. D. (1988) “How the Leopard Gets Its Spots,” Scientific American 258(3):80- 87.

98

Goerner, S. (1995) “Chaos, Evolution, and Deep Ecology,” in Robertson and Combs, Chaos Theory in Psychology and the Life Sciences, pp. 17-38; Worster, “The Ecology of Chaos and Harmony,” p. 14; Haldane, J. B. S. (1928) Possible Worlds and Other Papers, p. 298 (New York: Harper & Brothers).

99

Goerner, “Chaos, Evolution, and Deep Ecology,” p. 24.

100

Lovelock, J. E. (1988) “The Earth as a Living Organism,” in E. O. Wilson, ed., BioDiversity, pp. 486-489 (Washington, D.C.: National Academy Press).

101

Lovelock, J. E. (1979) Gaia: A New Look at Life on Earth (Oxford: Oxford University Press); Margulis, L., and D. Sagan (1986) Microcosmos: Four Billion Years of Microbial Evolution (New York: Summit Books); Bunyard, P., and E. Goldsmith, eds., (1988) Gaia: The Thesis, the Mechanisms, and the Implications, Proceedings of the First Annual Camelford Conference on the Implications of the Gaia Hypothesis (Camelford: Wadebridge Ecological Centre); Lovelock, J. E. (1988) The Ages of Gaia: A Biography of Our Living Earth (New York: W. W. Norton and Company); Bunyard and Goldsmith, Gaia and Evolution; Schneider, S. H., and P. J. Boston, eds., (1991) Scientists on Gaia, Proceedings of the American Geophysical Union’s Annual Chapman Conference (Cambridge, Mass.: MIT Press); Williams, G. R. (1996) The Molecular Biology of Gaia (New York: Columbia University Press).

102

Lambert, D., and R. Newcomb (1989) “Gaia, Organisms, and a Structuralist View of Nature,” in Bunyard and Goldsmith, Gaia and Evolution, pp. 75-76.

103

Lovelock, “The Earth as a Living Organism,” p. 488.

104

Tilman, D., and J. A. Downing (1994) “Biodiversity and Stability in Grasslands,” Nature 367:363-65.

105

Technically, this group comprises 13 distinct families of birds, combined into a higher-level grouping (or “suborder”) known as the Charadrii. For information on the heterosexual mating systems in these families, see del Hoyo, J., A. Elliott, and J. Sargatal, eds., (1996) Handbook of the Birds of the World, vol. 3: Hoatzin to Auks, pp. 276-555 (Barcelona: Lynx Edicions); Paton, P. W. C. (1995) “Breeding Biology of Snowy Plovers at Great Salt Lake, Utah,” Wilson Bulletin 107:275-88; Nethersole-Thompson, D., and M. Nethersole-Thompson (1986) Waders: Their Breeding, Haunts, and Watchers (Calton: T. and A. D. Poyser); Pitelka, F. A., R. T. Holmes, and S. F. MacLean Jr. (1974) “Ecology and Evolution of Social Organization in Arctic Sandpipers,” Arnerican Zoologist 14:185—204. For details of species involving homosexual activity, see the profiles and references in part 2.

106

Carranza, J., S. J. Hidalgo de Trucios, and V. Ena (1989) “Mating System Flexibility in the Great Bustard: A Comparative Study,” Bird Study 36:192—98. For further discussion of the possible benefits provided by behavioral plasticity, and variable sexual behaviors as a response to environmental or social variability, see Komers, P. E. (1997) “Behavioral Plasticity in Variable Environments,” Canadian Journal of Zoology 75:161— 69; Carroll, S. P., and P. S. Corneli (1995) “Divergence in Male Mating Tactics Between Two Populations of the Soapberry Bug: II. Genetic Change and the Evolution of a Plastic Reaction Norm in a Variable Social Environment,” Behavioral Ecology 6:46-56; Rodd, F. H., and M. B. Sokolowski (1995) “Complex Origins of Variation in the Sexual Behavior of Male Trinidadian Guppies, Poecilia reticulata: Interactions Between Social Environment, Heredity, Body Size, and Age,” Animal Behavior 49:1139—59. For an analysis of nonbreeding as an adaptive response to environmental variability, see, for example, Aebischer and Wanless 1992 (Shag).

107

Golden Plover (Nethersole-Thompson and Nethersole-Thompson 1961:207-8 [on the possibility that “disruption” of heterosexual pairing in related species of plovers is due to late snow-melts, see Johnson, O. W., P. M. Johnson, P. L. Bruner, A. E. Bruner, R. J. Kienholz, and P. A. Brusseau (1997) “Male-Biased Breeding Ground Fidelity and Longevity in American Golden-Plovers,” Wilson Bulletin 109:348—351]); Grizzly Bear (Craighead et al. 1995:216-17; J. W. Craighead, personal communication); Ostrich (Sauer 1972:717); Ring-billed and California Gulls (Conover et al. 1979); Rhesus Macaque (Fairbanks et al. 1977:247-48); Stumptail Macaque and other primates (Bernstein 1980:32; Vasey, “Homosexual Behavior in Primates,” pp. 193-94). See also Hand (1985) for the suggestion that environmental “stresses” may call forth “plastic” social and sexual responses (such as homosexual pairing) in Laughing Gulls and other species. As noted in chapter 4, the occasional association of homosexuality with “unusual” ecological (or other) conditions is typically interpreted by scientists in a negative way, as evidence of a “disturbed” biological or social order rather than of a flexible response to (or synergy with) ongoing environmental flux. Moreover, the evidence for many of these cases—while intriguing—is anecdotal at best, and more systematic investigation will be necessary before any conclusions or even further speculations can be put forward in this regard.

108

Japanese Macaque (Eaton 1978:55-56). See also Vasey’s (“Homosexual Behavior in Primates,” p. 196) suggestion that homosexuality may not be adaptive itself, but may represent a neutral behavioral “by-product” of some other trait that is adaptive, such as behavioral plasticity. For more on cultural and protocultural phenomena in animals, see chapter 2.

109

Bataille, G. (1991) The Accursed Share, vol. 1, p. 33 (New York: Zone Books).

110

Gleick, Chaos: Making a New Science, pp. 4, 221, 306.

111

Wilson, Diversity of Life, pp. 201, 210.

112

Catchpole, C. K., and P. J. B. Slater (1995) Bird Song: Themes and Variations, pp. 187, 189 (Cambridge: Cambridge University Press).

113

Eberhard, W. G. (1996) Female Control: Sexual Selection by Cryptic Female Choice, pp. 55, 81 (Princeton: Princeton University Press); Eberhard, W. G. (1985) Sexual Selection and Animal Genitalia, p. 17 (Cambridge, Mass.: Harvard University Press).

114

Weldon, P. J., and G. M. Burghardt (1984) “Deception Divergence and Sexual Selection,” Zeitschrift fur Tierpsychologie 65:89—102.

115

Bataille, Accursed Share.

116

For example, it is often erroneously thought that indigenous “subsistence” cultures are characterized by a scarcity of resources and an arduous, even desperate, struggle for survival, in contrast to modern industrial societies that have an abundance of resources and ample leisure time—when in fact the actual circumstances are

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×