число, совершенно тожественны и, как ранее указано, ближайшим образом в квадрате, а более формально, что не составляет здесь разницы, в высших степенях. Но степень, поскольку она есть число, — хотя бы мы и предпочитали выражение величина, как более общее, она в себе есть все же число — множество или изображена, как сумма, может ближайшим образом внутри себя самой быть разложена на любое множество чисел, которые как одно относительно другого, так и относительно их суммы, имеют только то определение, что они в своей совокупности равны ей. Но степень может быть изображена также, как сумма таких различий, которые определяются формою степени. Если степень принимается за сумму, то также понимается и ее основное число, корень, и может подлежать любому разнообразному разложению, причем это разнообразие есть безразличное эмпирически количественное. Сумма, каковою должен быть корень, сведенная к ее простой определенности, т. е. к ее истинной общности, есть двучлен; всякое дальнейшее умножение числа членов есть простое повторение того же определения и потому нечто пустое[27]. Тем самым единственно достигается качественная определенность членов, которая получается через потенцирование принимаемого за сумму корня, и эта определенность заключается единственно в изменении через потенцирование. Эти члены суть поэтому всецело функции возвышения в степень и степени. А это изображение числа, как суммы и множества таких членов, которые суть функции возвышения в степень, и тем самым интерес найти форму таких функций и далее сумму множества таких членов, поскольку это нахождение должно зависеть только от сказанной формы, и составляют, как известно, особое учение о рядах. Но при этом существенно отличать еще дальнейший интерес, именно, отношение самих лежащих в основе величин, — определенность которых, поскольку они суть некоторый комплекс, т. е. в данном {190}случае уравнение, заключает в себе степень, — к функциям их возвышения в степень. Это отношение, понимаемое совершенно отвлеченно от вышеназванного интереса суммы, выяснится, как тот исходный пункт, который единственно вытекает из действительной науки и указывается дифференциальным исчислением.
Нужно, однако, прибавить к сказанному или, правильнее, удалить из него еще одно заключающееся в нем определение. Было именно сказано, что на переменную величину, в определение которой входит степень, следует смотреть внутри ее самой, как на сумму и притом как на систему членов, поскольку они суть функции возвышения в степень, причем также и корень должен рассматриваться, как сумма, и в своей простой определенной форме, как двучлен; xn=(у +z)n=(y +nyn–1z+…). Это изображение развития степени, т. е. получения функции возвышения в степень, исходит от суммы, как таковой; но здесь дело идет не о сумме, как таковой, равно как не о происходящем из нее ряде, а от суммы берется только отношение. Отношение величин, как таковое, есть то, что, с одной стороны, остается после того, как отвлекается от plus некоторой суммы, как таковой; и что, с другой стороны, необходимо для нахождения развития функций степени. Но это отношение определяется уже тем, что здесь предмет, уравнение уm=ахn, есть уже комплекс многих (переменных) величин, содержащий их степенное определение. В этом комплексе каждый из этих членов положен просто в отношении к другим со значением, как можно выразиться, plus в нем самом, как функция прочих величин; свойство членов быть функциями один другого сообщает им это определение plus’a, но тем самым чего-то совершенно неопределенного, что не есть ни приращение, ни инкремент и т. д. Но и эту совершенно отвлеченную точку зрения мы можем оставить в стороне; можно просто остановиться на том, что поскольку переменные величины даны в уравнении, как функции одна другой, так что эта определенность содержит в себе отношение степеней, то и функции возвышения в степень каждой из них сравниваются между собою, причем вторые функции определяются только через самое возвышение в степень. Первоначально можно считать лишь произвольным или возможным сведение степенного уравнения переменных величин к отношению функции его развития; лишь дальнейшая цель, польза, употребление указывают на пригодность такого преобразования; оно обусловливается исключительно своею полезностью. Если ранее исходили от изображения этих степенных определений некоторой величины, принимаемой за порозненную внутри себя сумму, то это служило отчасти лишь для указания того, какого вида эти функции, отчасти способа их нахождения.
Мы подошли, таким образом, к обычному аналитическому развитию, понимаемому для цели дифференциального исчисления так, что переменной величине дается приращение dx, i, и затем степень двучлена развертывается в соответствующий ей ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формою, все значение которой состоит {191}в том, чтобы быть вспомогательным средством раскрытия ряда; то, к чему по признанию, определеннее всего выраженному Эйлером и Лагранжем, а также подразумеваемому вышеупомянутым представлением о пределе, стремятся в этом случае, суть лишь получающиеся при этом степенные определения переменных величин, так называемые коэффициенты, хотя и присущие приращению и его степеням, составляющим порядок ряда и причастным различным коэффициентам. При этом следует заметить, что хотя приращение, не имеющее определенного количества, принимается лишь для целей развития, но было бы всего уместнее обозначить его единицею (1), так как она постоянно повторяется в развитии, только как множитель, причем именно множитель единица достигает той цели, что через приращение не получается никакой количественной определенности и изменения; между тем как dx, сопровождаемый ложным представлением некоторой количественной разности, и другие знаки, например i, имеющие здесь бесполезную видимость общности, всегда сопровождаются показностью и притязанием какого-то определенного количества и его степеней; каковое притязание вызывает затруднения отбросить их и пренебречь ими. Для сохранения формы ряда, развернутого по степеням обозначения показателей, последние как знаки (indices) могли бы с таким же удобством быть присоединяемы и к единице. Но сверх того должно отвлечь и от ряда, и от определения коэффициентов по месту, занимаемому ими в ряду, так как отношение между всеми ими одно и то же; вторая функция выводится из первой точно так же, как первая из первоначальной функции, и для той, которая считается второю, первая производная функция есть опять-таки первоначальная. По существу же интерес направляется не на ряд, но единственно на получаемое через развитие степенное определение в его отношении к ближайшей к нему величине. Поэтому вместо того, чтобы считать это определение коэффициентом первого члена развития, было бы предпочтительнее, так как каждый член есть первый относительно следующих за ним членов ряда, считать такую степень степенью приращения, или поскольку самые ряды не имеют здесь значения, употреблять выражение производная степенная функция или, как сказано выше, функция возвышения величины в степень; причем признается за известное, каким путем совершается вывод, как заключенное внутри некоторой степени развитие.
Но если в этой части аналитики собственно математическое начало есть не что иное, как нахождение функции, определенной через степенное развитие, то является дальнейший вопрос, что