пространственно-временном континууме как реализации математического континуума (актуально бесконечного) может подвергнуться ревизии в различных направлениях, мыслимо, например, что макроскопическая непрерывность (пространства, времени, движения, существования частиц) имеет статистический характер, что в основе ее лежит дискретность пространства, времени, траектории, самого бытия частиц.
Выше (2.4.3) уже говорилось о связи между проблемами топологии и причинности (случайности). Связь эта, по-видимому, идет еще дальше, проникая в теоретико-множественное понимание континуума. Современная математика, возможно, нащупывает эту связь в исследованиях, связанных с мерой множества (в смысле Лебега). Послед-няя представляет собой интересный пример меры в общем (философском) смысле; в то же время она позволяет оперировать с такими множествами (абстрактными пространствами), которые плохо поддаются иным подходам; вместе с тем она является одним из центральных понятий в современной теории вероятностей, т. е. в науке о случайном (наука — отнюдь не враг случайностей!).
И все же наибольший «практический» интерес представляют не те метаматематические аспекты бесконечности, которые связаны с буквальным пониманием этого прилагательного, а с более распространенным, включающим в метаматематику те разделы математики, для которых еще не найдено (и, возможно, не будет найдено) место в старых, классических ее разделах (теория информации, теория игр, конечная, или дискретная математика, математическая логика и т. д.). Особенно важен логический аспект проблемы бесконечности и, соответственно, изучение этой проблемы средствами математической логики. Несмотря на то, что этот аспект весьма важен и для космологии, ему, по-видимому, уделялось очень немного внимания. Это является следствием характерной для нашего времени дифференциации науки, малой осведомленности специалистов о действительном положении дел за пределами узкой области своих интересов. Физики часто склонны думать, что вся сложность проблемы бесконечности Вселенной в том, что наблюдательные данные пока слишком ненадежны, что же касается математической, тем более — логической стороны дела, то, слава богу, здесь все ясно. Математики, наоборот, склонны думать, что хоть в физике (космологии) все достаточно ясно, поскольку все решается наблюдением, экспериментом. Специалисты по логике, возможно, полагают, что трудности есть и в математике, и в физике, но не логического порядка.
Между тем, пикантность ситуации состоит прежде всего в том, что в утверждениях типа «Космология доказывает, что Вселенная бесконечна (конечна)» чаще всего остается совершенно неясным, что понимается под космологи-ей, под доказательством, под Вселенной и под бесконечностью. Действительно, уже одно обилие прилагательных (астрономическая, физическая, наблюдательная, теоретическая и т. п. космология) свидетельствует о том, что применяющие их авторы сознают неопределенность термина «космология»; обычно, однако, эти прилагательные тоже ничего не проясняют, кроме желания автора подчеркнуть независимость своих построений от философии (и, возможно, логики). «Доказывает» в данном контексте тоже может совершенно ничего не доказывать, ибо из многовековой истории, попыток доказать пятый постулат Евклида хорошо известно, насколько призрачными становятся даже геометрические доказательства, стоит им только соприкоснуться с бесконечным. «Вселенная» в одной только физико- математической литературе употребляется в пяти-шести существенно различных значениях, причем на протяжении одной страницы или даже одной фразы может происходить переход к другому значению. Наконец, как мы видели, существует по крайней мере десяток разных типов «бесконечности». Во всем утверждении «Космология доказывает, что Вселенная бесконечна (конечна)» остается единственное недвусмысленное слово — служебное слово «что». Этот пример достаточно красноречиво говорит о необходимости хотя бы минимального уточнения логического статута основных понятий, связанных с бесконечностью.
Специально вопрос о логическом статуте бесконечности в релятивистской космологии исследует Э.М. Чудинов. Полученные им результаты, если я правильно их понимаю, могут быть резюмированы так. Бесконечность не выводима, не доказуема и не опровержима. Всякое доказательство бесконечности чего бы то ни было с самого начала предполагает существование чего-то бесконечного. При этом, разумеется, очень важно, чтобы в посылке не фигурировала та же самая бесконечность (тот же тип бесконечности), что и в выводе. Но, в конечном счете, утверждение о бесконечности всегда носит аксиоматический характер. Таково положение в классической математике. Но поскольку реляти-вистская космология использует именно такое понятие бесконечности — метрическое, являющееся частным случаем теоретико-множественного, — все это относится и к космологической бесконечности.
Эти выводы очень важны, и к ним придется вернуться В § 4.
Состояние проблемы бесконечности в космологии определяется в любую заданную эпоху тремя обстоятельствами. Первое — это состояние проблемы в математике. Вследствие этого космология до середины прошлого века могла оперировать только понятием бесконечности как неограниченной протяженности. Второе — это физическая теория, связывающая свойства пространства-времени с физическими свойствами материи. Поскольку до Эйнштейна свойства пространства-времени считались независимыми от свойств материи, космология продолжала оперировать этим пониманием бесконечности вплоть до 1916 года. Можно было высказывать лишь догадки о том, что метрика и топология физического пространства могут быть неевклидовыми (Риман, Клиффорд, Клейн и др.). Третье — это возможность сравнивать космологические построения с данными наблюдений, т. е. сравнивать предсказания физической теории и через нее соответствующий математический эталон бесконечности с реальностью. Даже самая волнующая космологическая гипотеза не будет приниматься всерьез, пока не выясняются возможности ее наблюдательной проверки. Так было с теорией Фридмана до начала 30-х годов, и по этой же причине топология в космологии до сих пор мало популярна, хотя в принципе ее значение известно в течение полувека.
И все же то, что мы узнали о топологических свойствах пространства-времени за последнее десятилетие, уже требует принципиальных изменений в постановке космологической проблемы. Проблема ставилась так. В первом при-ближении свойства изученной части Метагалактики можно считать такими, что законно пользоваться понятием универсального для всей этой области («мирового») времени и однородного изотропного пространства. В этом случае по локальным свойствам пространства — по метрике — можно установить, конечно оно или бесконечно. Поскольку метрические свойства пространства (ее кривизну) можно установить по данным астрономических наблюдений, эти данные, если они достаточно точны, являются решением проблемы, Если, например, кривизна положительна, то пространство Метагалактики замкнуто, и Метагалактика и есть Вселенная.
В результате исследований, выполненных за последнее десятилетие, сейчас следует признать, что все намного сложнее. Замкнутость космической системы есть физическая замкнутость, из нее ни в какой мере не следует, что помимо такой системы ничего не существует. Сейчас известно около десятка «сверхзвезд», и каждая из них может иметь свое физически замкнутое пространство и свой собственный ритм времени, не связанный с ритмом времени в остальных частях Метагалактики. Так же может обстоять дело с самой Метагалактикой в ее отношениях с окружающей средой.
Поэтому мы должны разделить проблему бесконечности в космологии на две существенно различные части, две проблемы. Первая проблема — это проблема конечности или бесконечности конкретных космических систем, в частности, Метагалактики. Это чисто физическая проблема, относящаяся к компетенции релятивистский астрофизики и релятивистской космологии. Она может ставиться и решаться обычным, «стандартным» образом, т. е. так, как это обычно и делалось до сих пор, с той, однако, поправкой, что топологическая сторона вопроса приобретает почти решающее значение.
Вторая проблема или вторая часть проблемы — это несравненно более сложная проблема бесконечности Вселенной. Это пограничная проблема естествознания и философии. Она может решаться только общими усилиями физики, астрономии, математики и философии и не может решаться ни одной из этих наук в отдельности. Процесс решения этой проблемы не может состоять из конечного числа этапов и завершиться за конечное время возможного существования любой из цивилизаций (включая земную). Но этим не уменьшается научное и мировоззренческое значение тех частных и попутных результатов, которые получаются в ходе решения проблемы.
Если бы мы даже могли каким-то образом узнать решение, соответствующее уровню знаний, скажем, середины XXI века (не говоря уже об «окончательном» решении), от этого не было бы никакой пользы.