19.5. Найдите сумму
где последнее слагаемое содержит
19.6. Докажите, что где цифра 1 повторяется 2
19.7. При каких значениях
является одновременно арифметической и геометрической прогрессией?
19.8. Пусть
19.9. Решите уравнение
зная, что его корни образуют возрастающую геометрическую прогрессию.
19.10. В бесконечно убывающей геометрической прогрессии сумма всех членов вдвое больше суммы первых
19.11. Найдите трехзначное число, цифры которого образуют арифметическую прогрессию и которое делится на 45.
19.12. Найдите трехзначное число по следующим условиям: его цифры образуют геометрическую прогрессию; если из него вычесть 594, то получится число, записанное теми же цифрами, но в обратном порядке; если цифры искомого числа увеличить соответственно на 1, на 2 и на 1, то получится арифметическая прогрессия.
19.13. Имеющиеся в колхозе комбайны, работая вместе, могут убрать урожай за одни сутки. Однако по плану комбайны возвращались с других полей и вступали в работу последовательно: в первый час работал лишь один комбайн, во второй — два, в третий — три и т. д. до тех пор, пока не начали работать все комбайны, после чего в течение нескольких часов перед завершением уборки урожая действовали все комбайны. Время работы по плану можно было бы сократить на 6 ч, если бы с самого начала уборки постоянно работали все комбайны, за исключением пяти. Сколько было комбайнов в колхозе?
19.14. Три брата, возрасты которых образуют геометрическую прогрессию, делят между собой некую сумму денег пропорционально своему возрасту. Если бы они это проделали через 3 года, когда самый младший окажется вдвое моложе самого старшего, то младший получил бы на 105, а средний на 15 p. больше, чем сейчас. Сколько лет каждому из братьев?
19.15. Три отличных от нуля действительных числа образуют арифметическую прогрессию, а квадраты этих чисел, взятые в том же порядке, образуют геометрическую прогрессию. Найдите всевозможные знаменатели этой геометрической прогрессии.
19.16. Даны два числа
и найдите предел этой последовательности.
19.17. Найдите все положительные значения
cos [(8
и расположенные в порядке возрастания, образуют арифметическую прогрессию.
Глава 20
Суммирование
При решении задач, связанных с последовательностями, приходится доказывать утверждения такого типа: «Для любого целого
Доказательство этих утверждений базируется на аксиоме индукции.
Пусть для некоторого утверждения
Тогда в качестве аксиомы (она называется
Метод доказательства, основанный на использовании аксиомы индукции, называется
С помощью метода математической индукции можно доказать формулы
20.1. Докажите неравенство
20.2. В арифметической прогрессии
20.3. Найдите сумму
20.4. Найдите зависимость между натуральными
где
20.5. Найдите коэффициент при
(1 +