выполнить сложение.

14.13. Это — иррациональное неравенство относительно у = cos x. Не следует забывать, что | у| ? 1. Благодаря этому решение можно упростить.

14.14. Если выразить sin x и cos x через tg x/2 , то получим алгебраическое неравенство, которое решается методом интервалов. (!)

14.15. Выразить все тригонометрические функции через sin ?.

14.16. Так как sin? x ? 0, то, заметив, что x = ?k — решения неравенства, можно изолировать параметр а?, разделив обе части неравенства на sin? x.

14.17. Если обозначить cos t = z, то данное выражение запишется в виде квадратного трехчлена относительно z, который должен быть положительным при всех ?1 ? z ? 1. Найдите абсциссу вершины соответствующей ему параболы.

K главе 15

15.1. В правой части можно произвести логарифмирование, не нарушая равносильности.

15.2. Рассмотреть случаи 0 < tg x < 1 и tg x > 1. Удобно выразить sin? x через tg? x. (!)

15.3. Нетрудно заметить, что на самом деле интервал можно сузить: 0 < x < ?/2 , так как при ?/2 < x < ? функции, стоящие под знаком логарифма, отрицательны.

15.4. Вначале нужно привести все логарифмы к общему основанию с помощью формулы logak N = 1/k loga N.

15.5. Неравенство эквивалентно условию, что основание логарифмов лежит между 0 и 1.

15.6. Начать следует с приведения левой части к виду, удобному для логарифмирования. Это позволит перейти к неравенствам, где уже не будут участвовать тригонометрические функции.

15.7. Использовать тот факт, что arccos у ? 0. Чему равносильно данное в условии неравенство?

15.8. Область значений левой части неравенства — интервал от 0 до ?/2 , а область значений правой части — интервал от 0 до ?. Так как левая часть должна быть больше правой, то аргумент арккосинуса не может стать отрицательным.

15.9. Второй сомножитель неотрицателен при всех x, следовательно, неравенство может удовлетворяться лишь при положительных значениях первого сомножителя. Если произведение двух положительных чисел не меньше единицы, то хотя бы одно из них не меньше единицы.

15.10. Обозначим первый сомножитель через А, а второй через В. Так как А ? 0, то неравенство равносильно совокупности двух систем:

K главе 16

16.1. Правая часть уравнения не может стать меньше двух. Сравнить с оценкой левой части. (!)

16.2. Это уравнение легко привести к квадратному относительно 2tg?x. (!)

16.3. Перейти к общему основанию. Не нарушится ли при этом равносильность?

16.4. Поскольку в левой части уравнения стоит произведение синуса и косинуса от одного аргумента, удобно воспользоваться формулой синуса двойного угла. Записать, чему равен аргумент.

16.5. Перейти к уравнению без логарифмов, позаботившись о сохранении ограничений.

16.6. Ввести вспомогательное неизвестное и преобразовать данное уравнение в квадратное. (!)

16.7. От этого уравнения легко перейти к тригонометрическому. При этом нужно учесть все ограничения, которыми логарифм связывает число и основание.

16.8. Уравнение равносильно уравнению  при условии, что cos? x ? 1/8.

16.9. Перейти к уравнению 5?(?) x = ?/4 + ?k и найти все k, при которых это равенство возможно.

16.10. Вначале решить квадратное уравнение относительно lg cos x. Затем найти cos x и на этом шаге провести исследование.

16.11. Решить квадратное уравнение и учесть все ограничения на параметр а в связи с появлением радикала и синуса.

16.12. Данную систему нужно заменить системой без логарифмов. Однако при этом следует помнить обо всех ограничениях, которые накладываются на число, стоящее под знаком логарифма, и на основание логарифма.

16.13. Уравнение составлено таким образом, что решить его с помощью элементарных преобразований нельзя. Остаются два пути: либо графическое решение, либо оценка правой и левой частей уравнения. Второй путь предпочтительнее, так как левая часть легко оценивается, если положить 4cos? ? ?x = u.

16.14. Трехчлен x? ? x + 0,5 всегда больше 0,25.

K главе 17

17.1. Данную систему решить относительно f (2x + 1) и g(x ? 1).

17.2. f(x) = x(x? ? 6x + 9) =

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату