11.14. Так как 2 logx 2 = logx 4, то после умножения обеих частей уравнения на log4x оно упростится. Нарушится ли при этом равносильность?

11.15. Вид уравнения подсказывает, что для его решения удобно перейти к логарифмам с общим основанием x. Равносильное ли получится уравнение?

11.16. В уравнение входят логарифмы выражения 3 + x при разных основаниях. Его можно упростить, если воспользоваться формулой

11.17. При решении удобнее следить за равносильностью, чем делать в конце проверку, которая окажется здесь достаточно громоздкой.

11.18. Если logvbx записать при основании а, то уравнение упростится.

11.19. Если в каждом из подкоренных выражений произвести логарифмирование с переходом к общему основанию а, то это позволит выделить под радикалами полные квадраты. Очевидно, такие же ограничения, как на а, должны быть наложены и на x.

11.20. Система не может иметь решений, в которых хотя бы одно неизвестное обращается в нуль (докажите). Следовательно, каждое уравнение можно прологарифмировать.

11.21. Поскольку нам известно, чему равно xу, то второе уравнение целесообразно возвести в степень у.

11.22. Из вида системы следует, что x и у положительны. Так как в левых частях уравнений одинаковые показатели степени, то целесообразно попытаться их найти.

11.23. Так как 11xz : 11z = 11(x ? 1) z, то с помощью этого соотношения можно получить уравнение относительно .

11.24. Так как коэффициенты в левых частях уравнений одинаковы (двойку во втором уравнении можно убрать, прибавив единицу к показателю степени), то целесообразно посмотреть, нет ли у левых частей общего множителя.

11.25. Вначале нужно перейти к общему основанию у логарифмов, а затем получить систему двух алгебраических уравнений.

11.26. Способ 1. Систему можно решить подстановкой, выразив из второго уравнения у через x.

Способ 2. Воспользоваться равенством аlogbc = сlogbа .

11.27. Решение системы нужно начать с использования ограничений, что позволит сократить число рассматриваемых случаев.

Из второго уравнения следует, что x и у — величины одного знака. Поскольку должен существовать log2 (x + у), то x и у положительны. Сумму x + у легко сравнить с единицей.

11.28. Это — алгебраическая система относительно u = log2x и v = log2 (у + 1). (!)

11.29. Оба уравнения можно упростить с помощью формулы

logakN = 1/k logaN (а > 0, а ? 1).

11.30. Первые два уравнения можно рассматривать как систему относительно соответствующих степеней тройки. Нетрудно заметить, что это позволит найти x.

K главе 12

12.1. Выражения, стоящие в квадратных скобках, существенно упростятся, если раскрыть скобки и выполнить возведение в степень. (!)

12.2. Это тождество по структуре похоже на формулу тангенса суммы. Чтобы заметить это, достаточно переписать его так:

tg 2? [tg (30° ? ?) + tg (60° ? ?)] = 1 ? tg (60° ? ?) tg (30° ? ?).

12.3. Перенести ctg x в левую часть и преобразовать вместе с ? tg x/2.

12.4. Поскольку нам нужно получить соотношение, в котором участвуют ? + ? и ?, то вместо sin ? удобно записать sin [(? + ?) ? ?] и воспользоваться формулой синуса разности. (!)

12.5. Домножить и разделить на 2 sin ?/7 и воспользоваться формулой синуса двойного угла. (!)

12.6. Вычислить произведение косинусов этих углов можно, если домножить и разделить его на 2 sin ?/7. После этого нужно трижды последовательно воспользоваться формулой синуса двойного угла (см. задачу 12.5).

12.7. Удобнее доказать, что правая часть равна левой. Для этого стоящее в правой части выражение нужно преобразовать с учетом данных равенств.

12.8. В произведении sin (x + у) sin (x ? у) удобно раскрыть синус суммы и синус разности.

12.9. Выразить дробь, стоящую в правой части последнего равенства, через синусы и косинусы ? и ?.

12.10. Данное выражение и выражение, которое нужно вычислить, симметричны относительно ?, ? и ?. Левую часть данного равенства удобно выразить через sin??, sin??, sin??.

12.11. Подставить ? = ? + ?/3, ? = ? + 2?/3 и записать данное выражение через синусы и косинусы.

12.12. Так как ctg ?, ctg ? и ctg ? образуют арифметическую прогрессию, то ctg ? + ctg ? = 2 ctg ?. Если теперь вспомнить, что ? = ?/2 ? (? + ?), то можно получить соотношение, не зависящее от ctg ? + ctg ?. (!)

12.13. cos 106° = cos (90° + 16°) = ?sin 16° = ?2 sin 8° cos 8°.

K главе 13

13.1. Множитель v2 sin (x + ?/4) замените на sin x + cos x.

13.2. Левую часть можно преобразовать так, чтобы она содержала множителем выражение, стоящее в правой части.

13.3. Выразить левую часть уравнения через sin x и cos

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату