10.8. Воспользоваться неравенством между средним арифметическим и средним геометрическим двух чисел.
10.9. Способ 1. Если обозначить три положительных слагаемых в левой части неравенства через
Способ 2. Если
Способ 3. Если
10.10. Преобразования удобно начать с записи
10.11. Если перемножить крайние и средние скобки, то получатся два трехчлена, отличающиеся только свободным членом. Это позволяет оценить левую часть, выделив квадрат трехчлена, свободный член которого находится посередине между свободными членами первого и второго трехчленов. (!)
10.12. Данные уравнения симметричны относительно
10.13. Данные уравнения можно переписать в виде
после чего можно получить уравнение, корнями которого будут
10.14. Нужно рассмотреть три случая, в зависимости от того, положителен, отрицателен или равен нулю дискриминант трехчлена. Затем обратить внимание на знак старшего коэффициента. (!)
10.15. Так как коэффициент при
10.16. Воспользоваться теоремой Виета и рассмотреть случаи, когда
10.17. Определить направление ветвей параболы и расположение ее корней относительно точек ?1 и +1, чтобы условия задачи выполнялись.
10.18. Если
10.19. Рассмотреть случаи, позволяющие раскрыть знаки абсолютной величины. Удобнее записать это неравенство как совокупность двух систем: в первой выражение, стоящее под знаком абсолютной величины, неотрицательно, а во второй системе оно отрицательно. (!)
10.20. Чтобы избавиться от знаков абсолютных величин, достаточно вспомнить о том, как они могли быть получены, например = |
10.21. Чтобы упростить данное неравенство, его нужно умножить на 4
10.22. Если перенести 3 в левую часть неравенства и привести полученное выражение к общему знаменателю, то получим дробь, которая должна быть отрицательной.
10.23. Неравенство можно упростить, если перенести все в одну сторону, привести выражения, стоящие под радикалами, к общему знаменателю и вынести за скобки неотрицательный множитель
10.24. Удобно рассмотреть два случая:
10.25. В неравенство входит сумма двух выражений: v
10.26. Поскольку второе слагаемое всегда неотрицательно, целесообразно рассмотреть два случая:
10.27. Если привести обе части неравенства к основанию 2, то можно заметить симметрию показателей.
10.28. Если перенести все влево и сгруппировать члены, содержащие иррациональное выражение в показателе степени, то это поможет разложить левую часть на множители. (!)
10.29. Придется разобрать два случая:
10.30. Чтобы сравнить показатели степени, необходимо выяснить, как основание