Это уравнение нужно решить относительно а. Подберите удобную замену переменной.
1.51. Пусть PP1 — средняя линия треугольника АВС, а QQ1 — средняя линия треугольника PBP1 Пусть далее P1 — точка пересечения PP1 и BR, а Q2 — точка пересечения QQ1 с BR. Убедитесь в подобии треугольников Р2TP и Q2TQ.
1.52. Рассмотрите треугольники с общей вершиной, опирающейся на отрезки, которые участвуют либо в условии задачи, либо в искомом соотношении.
1.53. MN — хорда второй окружности, ее центральный угол МО2N равен 150°, что следует из рассмотрения первой окружности.
1.54. Так как ? + ? + ?+ ? = 180°, то площадь S четырехугольника АВСD равна
S = ?ab sin (? + ?) + ?cd sin (? + ?) = ? sin (? + ?) (ab + cd).
Далее воспользоваться теоремой синусов, в силу которой а = 2R sin ?, b = 2R sin ? , ... .
2.1. Осуществить параллельный перенос отрезка DC в точку В.
2.2. Сколько решений имеет задача?
2.3. Точки А и А1 лежат на прямой, параллельной BC и отстоящей от BC на расстоянии hа. Нужно найти еще одно свойство любой из этих точек; в этом должен помочь угол ?.
Отразив треугольник СА1А от оси А1А, получим треугольник С1А1А (рисунок сделайте самостоятельно). Фигура С1АВА1 — параллелограмм, у которого вершины С1 и В фиксированы, углы известны, а две другие вершины нужно построить.
2.4. Зная R и b, можно построить треугольник АОF (рис. II.2.4). Остается использовать медиану mс. Чтобы это сделать, нужно, после того как построен треугольник АОF, построить середину отрезка AB.
2.5. Докажите, что точка Q лежит на окружности, описанной около треугольника АВС. Для этого достаточно вычислить угол ВО1С.
2.6. Предположим, что точки D и E найдены (рис. II.2.6). Если через любую точку F, лежащую на AB, провести прямую FG, параллельную DЕ и пересекающую АЕ в точке G, а через точку G — прямую GH, параллельную ЕС, то получим четырехугольник AFGH, подобный АDЕС, с центром подобия в точке А.
2.7. «Средним» будет такое положение прямой FЕ, когда FM = ME.
2.8. В треугольнике А1АА2 известны основание и высота. Третий элемент этого треугольника можно найти, если использовать данный в условии угол А треугольника АВС, через который легко выразить угол А1АА2.
2.9. Если взять любой из треугольников, образовавшихся при вершине P (рис. 11.2.9), то начало для построения ломаной, составленной из АР, ВР и СР, уже есть. Однако просто пристроить недостающее звено нельзя, так как последняя вершина такой ломаной не будет закреплена, а потому не позволит решить задачу.
На помощь приходит свойство правильного треугольника: поверните треугольник АВР на 60° вокруг точки А и вы получите ломаную В1Р1РС, равную сумме отрезков АР, ВР и СР. При этом точка В1 однозначно определяется видом треугольника АВС.
2.10. Чтобы построить точку С, достаточно знать длину отрезка СЕ или длину отрезка DЕ = СЕ ? l. Задача сводится к вычислению и построению отрезка DЕ.
2.11. Вершина С лежит, с одной стороны, на окружности радиусом b с центром в точке В, а с другой стороны, на прямой, параллельной АD, которую нетрудно построить.
2.12. Остается построить треугольник ОМС по трем сторонам: СМ = АО = R, ОС = 2R, ОМ известно, так как точки О и M даны.
2.13. Треугольник ОО1E, где О1E ? AB, а точка E лежит на ОС, легко построить, зная О1Е = a/2.
2.14. Точки M и N лежат на окружности, концентрической данной.
2.15. Отрезок РQ перенести параллельно в отрезок В1В и рассмотреть угол АРВ1.
2.16. Чтобы построить параллелограмм FBDE на его диагонали, нужно найти еще одну связь между вершинами F