DD1 = R/2.

Отсюда O1D = 2R/3R/2R/6 . Так как АD = ? AC = R v3/2, то

Ответ. R v7/3

1.2. B треугольнике AOB (рис. P.1.2) известны: ? BAO = ?/2 , ? AOB = ?/2?/2, BO = m· По теореме синусов находим ABm ctg ?/2· Теперь можно найти AC и R = ВО1:

AC = 2AD = 2АВ sin (?/2 ? ?) = 2АВ cos ? = 2m ctg ?/2 cos ?,

Ответ.

1.3. Условие задачи может быть геометрически осуществлено в двух случаях (рис. Р.1.3, а), т. е. когда треугольник либо правильный, либо равнобедренный тупоугольный (докажите). Решить эту задачу можно сразу для обоих случаев. На рис. Р.1.3, б изображены треугольник ABC и треугольник А1В1С< sub>1, составленные из средних линий первого треугольника. Треугольник А1В1С< sub>1 подобен треугольнику ABC с коэффициентом подобия половина. Следовательно, радиусы окружностей, описанных около этих треугольников, относятся как один к двум.

1.4. Если сторона а треугольника ABC биссектрисой АА1 разделена на отрезки а1 и а2, то можно записать следующие соотношения (рис Р. 1.4.):

Решая эту систему уравнений относительно a1 и а2, получим

Вычислим аналогично отрезки, на которые разделены стороны b и с треугольника ABC:

Так как отношение площадей треугольников, имеющих общий угол, равно отношению произведений сторон, между которыми лежит этот общий угол, то

Аналогично находим

Теперь найдем отношение

Ответ.

1.5. Выразим площадь треугольника ABC через радиус r вписанной окружности и углы А, B и С треугольника. Вначале запишем

SABC = SAOB + SBOC + SCOA

(рис. P.1.5).

Так как

SAOB = ?АО · ВО sin OB,

где

и, следовательно, sin ?AOB = sin A + B/2 = cos C/2 , то

Аналогично находим SBOC и SCOA и вычисляем искомую площадь:

Выразим теперь через r, А, B и С площадь треугольника А1В1С< sub>1. Разобьем и его на три треугольника:

Чтобы найти угол А1ОВ1, рассмотрим четырехугольник А1ОВ1С . B этом четырехугольнике два угла прямых, а потому два других — угол А1ОВ1 и угол С — образуют в сумме развернутый угол, т. е. угол А1ОВ1 равен ? ? С. Аналогично находим углы В1ОС1 и С1ОА1.

Итак,

Остается найти отношение

Ответ. 2 sin A/2 sin B/2 sin C/2 .

1.6. Так как B = 3С, то из

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату