Andes, West Africa, and the Mississippi Valley were effectively rather isolated from societies with writing. That's not to say that those societies without writing were totally isolated. West Africa eventually did receive Fertile Crescent domestic animals across the Sahara, and later accepted Islamic influence, including Arabic writing. Corn diffused from Mexico to the Andes and, more slowly, from Mexico to the Mississippi Valley. But we already saw in Chapter 10 that the north- south axes and ecological barriers within Africa and the Ameri-cas retarded the diffusion of crops and domestic animals. The history of writing illustrates strikingly the similar ways in which geography and ecology influenced the spread of human inventions. CHAPTER 13 necessity's mother ON JULY 3, 1908, ARCHAEOLOGISTS EXCAVATING THE ancient Minoan palace at Phaistos, on the island of Crete, chanced upon one of the most remarkable objects in the history of technology. At first glance it seemed unprepossessing: just a small, flat, unpainted, circular disk of hard- baked clay, 6l/2 inches in diameter. Closer examination showed each side to be covered with writing, resting on a curved line that spiraled clockwise in five coils from the disk's rim to its center. A total of 241 signs or letters was neatly divided by etched vertical lines into groups of several signs, possibly constituting words. The writer must have planned and executed the disk with care, so as to start writing at the rim and fill up all the available space along the spiraling line, yet not run out of space on reaching the center (page 240). Ever since it was unearthed, the disk has posed a mystery for historians of writing. The number of distinct signs (45) suggests a syllabary rather than an alphabet, but it is still undeciphered, and the forms of the signs are unlike those of any other known writing system. Not another scrap of the strange script has turned up in the 89 years since its discovery. Thus, it remains unknown whether it represents an indigenous Cretan script or a foreign import to Crete. For historians of technology, the Phaistos disk is even more baffling; its Z 4 O •GUNS,GERMS, AND STEEL One side of the two-sided Phaistos Disk. estimated date of 1700 b.c. makes it by far the earliest printed document in the world. Instead of being etched by hand, as were all texts of Crete's later Linear A and Linear B scripts, the disk's signs were punched into soft clay (subsequently baked hard) by stamps that bore a sign as raised type. The printer evidently had a set of at least 4.5 stamps, one for each sign appearing on the disk. Making these stamps must have entailed a great deal of work, and they surely weren't manufactured just to print this single document. Whoever used them was presumably doing a lot of writing. With those stamps, their owner could make copies much more quickly and neatly than if he or she had written out each of the script's complicated signs at each appearance. The Phaistos disk anticipates humanity's next efforts at printing, which similarly used cut type or blocks but applied them to paper with ink, not NECESSITY'SMOTHER • 24 I to clay without ink. However, those next efforts did not appear until 2,500 vears later in China and 3,100 years later in medieval Europe. Why was the disk's precocious technology not widely adopted in Crete or elsewhere in the ancient Mediterranean? Why was its printing method invented around 1700 b.c. in Crete and not at some other time in Mesopotamia, Mexico, or any other ancient center of writing? Why did it then take thousands of years to add the ideas of ink and a press and arrive at a printing press? The disk thus constitutes a threatening challenge to historians. If inventions are as idiosyncratic and unpredictable as the disk seems to suggest, rHen efforts to generalize about the history of technology may be doomed from the outset. Technology, in the form of weapons and transport, provides the direct means by which certain peoples have expanded their realms and conquered other peoples. That makes it the leading cause of history's broadest pattern. But why were Eurasians, rather than Native Americans or sub- Saharan Africans, the ones to invent firearms, oceangoing ships, and steel equipment? The differences extend to most other significant technological advances, from printing presses to glass and steam engines. Why were all those inventions Eurasian? Why were all New Guineans and Native Australians in a.d. 1800 still using stone tools like ones discarded thousands of years ago in Eurasia and most of Africa, even though some of the world's richest copper and iron deposits are in New Guinea and Australia, respectively? All those facts explain why so many laypeople assume that Eurasians are superior to other peoples in inventiveness and intelligence. If, on the other hand, no such difference in human neurobiology exists to account for continental differences in technological development, what does account for them? An alternative view rests on the heroic theory of invention. Technological advances seem to come disproportionately from a few very rare geniuses, such as Johannes Gutenberg, James Watt, Thomas Edison, and the Wright brothers. They were Europeans, or descendants of European emigrants to America. So were Archimedes and other rare geniuses of ancient times. Could such geniuses have equally well been born in Tasmania or Namibia? Does the history of technology depend on nothing more than accidents of the birthplaces of a few inventors? Still another alternative view holds that it is a matter not of individual inventiveness but of the receptivity of whole societies to innovation. Some societies seem hopelessly conservative, inward looking, and hostile to 2 4 2 'GUNS,GERMS,and steel change. That's the impression of many Westerners who have attempted to help Third World peoples and ended up discouraged. The people seem perfectly intelligent as individuals; the problem seems instead to lie with their societies. How else can one explain why the Aborigines of northeastern Australia failed to adopt bows and arrows, which they saw being used by Torres Straits islanders with whom they traded? Might all the societies of an entire continent be unreceptive, thereby explaining technology's slow pace of development there? In this chapter we shall finally come to grips with a central problem of this book: the question of why technology did evolve at such different rates on different continents. The starting point for our discussion is the common view expressed in the saying 'Necessity is the mother of invention.' That is, inventions supposedly arise when a society has an unfulfilled need: some technology is widely recognized to be unsatisfactory or limiting. Would-be inventors, motivated by the prospect of money or fame, perceive the need and try to meet it. Some inventor finally comes up with a solution superior to the existing, unsatisfactory technology. Society adopts the solution if it is compatible with the society's values and other technologies. Quite a few inventions do conform to this commonsense view of necessity as invention's mother. In 1942, in the middle of World War II, the U.S. government set up the Manhattan Project with the explicit goal of inventing the technology required to build an atomic bomb before Nazi Germany could do so. That project succeeded in three years, at a cost of $2 billion (equivalent to over $20 billion today). Other instances are Eli Whitney's 1794 invention of his cotton gin to replace laborious hand cleaning of cotton grown in the U.S. South, and James Watt's 1769 invention of his steam engine to solve the problem of pumping water out of British coal mines. These familiar examples deceive us into assuming that other major inventions were also responses to perceived needs. In fact, many or most inventions were developed by
Вы читаете Guns, Germs & Steel
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×