простой и самый старый метод для этого следующий: допустим, что вы хотите получить в ответе 23 843. Отбросьте первую цифру, т. е. 2, а затем сложите ее с оставшимся числом, получится 3845. Это число вы напишите первым.
Теперь попросите зрителя подписать внизу любое четырехзначное число:
3 845
1528.
Под этими двумя числами вы пишете, как должно казаться зрителям — наугад, третье четырехзначное число. В действительности же под каждой цифрой, написанной зрителем, вы пишете ее дополнение до девятки:
3 845
1 528
8471.
Далее пишет свое второе четырехзначное число зритель. Третье число пишете вы, причем, как и в предыдущем случае, составляете его из цифр, дополняющих до девяток цифры зрителя.
Сумма выписанных пяти чисел в точности равна 23 843. В рассмотренном только что примере первая цифра предсказанного ответа была равной 2. Ей соответствовали две пары чисел, у которых сумма цифр, стоящих друг над другом, составляла 9, а всего слагаемых было пять. Если первой цифрой назначенной суммы будет цифра 3, то нужно брать три пары чисел с суммой стоящих друг над другом цифр, равной 9, и т. д. Во всех случаях первое число, которое нужно записать, вы получаете, отбрасывая первую цифру предсказанной суммы, а затем складывая ее с оставшимся числом. Фокус можно показывать с числами, составленными из любого числа цифр. Нужно только, чтобы во всех слагаемых оно было одинаковым.
Существует много вариантов этого фокуса. Например, первое число может написать зритель. Тогда ваше число, которое вы записываете под числом зрителя, нужно выбрать так, чтобы цифры, стоящие друг над другом, давали в сумме девятку. Далее зритель пишет третье число, вы пишете по тому же принципу четвертое число. Зритель пишет пятое и последнее число, после чего вы подводите черту и мгновенно подписываете сумму. Или, если вам это покажется более эффективным, пока зритель суммирует числа, поворачиваетесь спиной, а затем, не глядя на записанное, объявляете результат. Ответ получается, конечно, следующим образом: из последнего написанного числа нужно вычесть двойку и поставить ее перед полученным числом.
По желанию вы можете затянуть процесс суммирования. Например, можно вместе со зрителем записать шесть пар слагаемых, каждая из которых дает в сумме девятки. Последнее число, которое запишет зритель, доведет количество слагаемых до 13; чтобы получить теперь ответ, нужно из тринадцатого числа вычесть 6, а затем написать 6 перед числом, полученным в остатке. Если вообразить себе, что сложение распространится, скажем, на 28 пар чисел, прежде чем будет написано последнее число, принцип фокуса остается неизменным: вычтите 28 из последнего числа и поставьте 28 перед полученным остатком.
Существует еще один вариант фокуса, когда предсказание записывает зритель. Допустим, он выбрал число 538. Отбросьте пятерку и сложите ее с остатком, получится 43. Это число вы записываете первым.
Теперь поочередно со зрителем, пользуясь принципом девятки, вы записываете числа в столбик, пока под первым числом не окажется пять пар:
В ответе, конечно, получается число, предсказанное зрителем.
«Психологические моменты»
Еще одна категория фокусов с числами, совсем отличная от фокусов с предсказанием или отгадыванием числа, основана на том, что называют психологическими моментами. Эти фокусы не всегда получаются, но по каким-то неведомым причинам психологического характера шансы на успех при их демонстрации оказываются значительно большими, чем этого можно было ожидать. Вот простой пример. Если вы попросите назвать какое-нибудь число от 1 до 10, большинство людей назовет семерку, а если заданные границы будут 1 и 5, то — тройку.
Еще один любопытный психологический фактор, неизвестно кем впервые подмеченный, можно использовать в фокусе следующим образам. Напишите на клочке бумаги число 37 и отложите его в сторону. Затем, обращаясь к кому-нибудь из присутствующих, скажите: «Назовите, пожалуйста, двузначное число между 1 и 50, чтобы обе его цифры были нечетными и различными. Например, число 11 называть нельзя».
Может показаться странным, но много шансов, что зритель назовет 37 (второе наиболее вероятное число 35). В сущности, его выбор ограничен восемью числами, причем упоминание числа 11 как бы привлекает его мышление к числам третьего десятка.
Если этот фокус у вас получится, попробуйте за ним другой. На этот раз попросите назвать двузначное число между 50 и 100, обе цифры которого должны быть четными и, как и в предыдущем случае, различными. В данном случае выбор зрителя ограничен семью числами, из которых как будто чаще всех называют 68. Если под руками имеются игральные карты, можно предсказать это число, положив на стол шестерку и восьмерку лицевой стороной вниз. Это повышает ваши шансы на успех, так как вы имеете выбор между двумя возможными ответами, т. е. между 68 и 86, в зависимости от того, какую карту вы откроете первой.
Примечания
1
Автор имеет в виду стандартную колоду из 52 карт, по 13 карт каждой масти, и использует следующую нумерацию карт в пределах данной масти:
1 — туз, 2 — двойка, 3 — тройка, 4 — четверка, 5 — пятерка, 6 — шестерка, 7 — семерка, 8 — восьмерка, 9 — девятка, 10 — десятка, 11 —валет, 12 — дама, 13 — король.
2
Предположим, что у зрителя имеется
Очевидное равенство
является математическим эквивалентом утверждения, показывающего: «у меня имеется на