Число m следует выбирать маленьким; если m + k будет больше, чем N, то разность N — k — m окажется отрицательной.

3

Истинная цель действий показывающего сводится к отсчету с помощью зрителя сорока карт, причем так, чтобы зритель не догадался об этом. Если x1, х2, х3, x4 — числовые значения взятых карт, то откладывается соответственно 10 — x1, 10 — x2, 10- x3, 10 — x4 — карт; всего отложено 40 — x1 — х2 — x3 — х4 карт, следовательно, до 40 не хватает как раз х1 + x2 + x3 + x4 карт.

4

Девятая карта снизу является сорок четвертой сверху. Если совпадения не происходит, откладывается 11 карт.

Если совпадение происходит на карте с числовым значением n, то отсчитано, считая и ее, 11 — n карт; зритель затем отсчитывает n карт, что дает снова 11 карт. Четырехкратное повторение процедуры дает 44 карты, что и требуется.

5

«Снять» колоду означает: разделив колоду на две части, поменять их местами. Если карты колоды записать последовательно на окружности (образовать «цикл»), то операция «снятия», не меняя порядка карт в цикле, изменяет только начало отсчета.

6

При снятии восьми карточной колоды вида ABCDABCD вторая четверка карт всегда совпадает с первой.

7

Для любого числа между 10 и 19 разность между этим числом и суммой его цифр всегда равна 9, так что мы после указанных операций всегда попадаем на девятую карту.

8

Для любого числа между 20 и 29 разность между этим числом и суммой его цифр всегда равна 18. Чтобы фокус удался, нужно, чтобы часть колоды, «снятая» зрителем, насчитывала не менее 20 и не более 29 карт.

9

После ряда снятий расположение карт в тринадцатикарточной колоде с первоначальным расположением (верх) 13, 12, 11…. 3, 2, 1 (низ) заменится следующим: (верх) k — 1, k — 2…. 2, 1, 13, 12…. k (низ), где 1 <= k <= 13. Выше карты 13 лежит k — 1 карт, и сама карта 13 является k-й картой сверху.

Затем в результате перевода одной карты снизу колоды наверх на k-м месте сверху будет лежать карта 1, в результате перевода двух карт — карта 2 и т. д.; таким образом, если в результате снятия перенесено снизу вверх, положим, m карт, то на k-м месте сверху будет лежать карта m, что и требуется.

10

Пусть m < 26 и n > 26 — числа, названные зрителем. Если первоначальное расположение карт в колоде было (верх) 1, 2, 3…., m — 1, m, m + 1…. n — 1, n, 51, 52 (низ), то после первой процедуры оно становится следующим:

(верх) m — 1, m — 2…. 1; m, m + 1, n — 1, n…, 51, 52, (низ), а после второй процедуры — следующим: (верх) n — 1, n — 2…, m + 1, m, 1, 2…. m — 1; n…. 51, 52 (низ.) Очевидно, если отсчитать сверху n — m карт, следующей будет 1, что и требуется.

11

Потому что число костей, содержащих на одной из половинок заданное число очков, четно (если не принимать во внимание дубля), а внутри цепи такие кости расставлены парами.

12

Если m — наименьшее число в указанном квадрате, то весь квадрат имеет вид

и сумма всех чисел квадрата равна 9m + 72 = 9(m +

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату