r — расстояние до фокуса, а a — главная полуось орбиты. (Примеч. перев.)
Хотя слово «хаос» и не применялось к этим теориям, пока физик Джеймс Йорк не ввел его в оборот в 1976 г. Бестселлер Джеймса Глейка 1987 г. «Хаос. Создание новой науки» остается лучшим введением в теорию хаоса для простых людей… если не считать пьесы Тома Стоппарда «Аркадия» 1993 г. (Русский перевод книги Глейка вышел в 2001 г. в издательстве «Амфора». — Примеч. перев.)
Лауреат медали имени Макса Планка 2003 г. за развитие квантовой теории металлов. (Примеч. перев.)
Чтобы у читателя не возникало ощущение систематического надувательства, стоит, возможно, заметить, что, например, v3 в характеристическом многочлене — это котангенс 30 градусов, т.е. угла поворота. (Примеч. перев.)
Курт Хензель (Гензель) (1861-1941) — еще один представитель семейного древа Мендельсонов. Его бабушка Фанни была сестрой композитора, а его отец Себастьян Хензель — ее единственным сыном. Себастьяну было 16 лет, когда Фанни умерла, а его отправили жить с семейством Дирихле (глава 6.vii), где он и оставался до своей женитьбы. Большая часть карьеры Курта прошла в Магдебургском университете в центральной Германии; он вышел на пенсию в 1930 г. Несмотря на свое еврейское происхождение, он, по-видимому, не пострадал при нацистах. «В целом Мендельсоны не испытали на себе весь ужас нюрнбергских антисемитских законов, поскольку большинство представителей семейства были крещены несколько поколений назад» (Купферберг X. Мендельсоны). В 1942 г. невестка Хензеля принесла его обширную математическую библиотеку в дар только что подвергшемуся нацификации Страсбургскому университету в оккупированном Эльзасе — университет заново открылся в ноябре того года под немецкой вывеской Reichsuniversitat Strassburg (сейчас он снова во Франции). (Курт Хензель выступил также соавтором известного конспекта лекций Т. Моммзена о римских императорах; в течение двух зимних и одного летнего семестра эти лекции были «оазисом души» Себастьяна Хензеля, которому «было трудно примириться с тем, что Моммзен не написал истории римских императоров». — Примеч. перев.)
И как минимум один математик в письменном виде выразил сдержанный скептицизм. В рецензии на статью Конна 1999 г. «Следовые формулы в некоммутативной геометрии и нули дзета-функции Римана» Питер Сарнак (не являющийся ни математиком X, ни математиком Y) заметил: «Аналогии и вычисления в статье и в приложениях к ней многозначительны, симпатичны и замысловаты, и по этой причине представляется, что предложено нечто большее, чем просто еще одна эквивалентная переформулировка ГР. Однако рецензенту не очевидно, удастся ли на самом деле использовать развитые здесь идеи, в частности пространство X, для получения каких-нибудь новых результатов о нулях функции L (s, ?)». Функция L(s, ?), о которой пишет Сарнак, представляет собой один из тех аналогов дзета-функции Римана, которые упоминались в главе 17.iii.
Официально этот подход называется «вероятностная интерпретация Данжуа», по имени французского аналитика Арно Данжуа (1884-1974). Данжуа был профессором математики в Парижском университете с 1922 по 1955 г.
Это длинное шведское название буквально и означает: «Шведская компания по страхованию жизни». (Примеч. перев.)
«Прикасаясь к скучным формулам своей волшебной палочкой, он превращал их в поэзию», — вспоминал Гуннар Блом в своем очерке, включенном в собрание трудов Крамера. Крамер (1893-1985) — еще один «бессмертный». Он умер спустя несколько дней после своего 92-летия.
Я позаимствовал этот мысленный эксперимент из главы 3 книги «Простые числа и их распределение», которую написали Джеральд Тененбаум и Мишель Мендес-Франс (American Mathematical Society publications, 2000).