Еще одним усовершенствованием этого алгоритма является предложенный авторами порядок сортировки блоков ЦВЗ. Блоки ЦВЗ упорядочиваются по убыванию в них числа единиц. Блоки исходного изображения-контейнера также упорядочиваются по убыванию дисперсий. После этого выполняется соответствующее вложение данных.

Надо отметить, что этот алгоритм не является робастным по отношению к JPEG-компрессии.

А5. (Tao [21]). Для обнаружения ЦВЗ детектору требуется исходный контейнер. При встраивании ЦВЗ используются коэффициенты ДКП, имеющие наименьший шаг квантования в таблице JPEG. Число и местоположение этих коэффициентов не зависит от изображения.

Алгоритм работает следующим образом. Вначале выполняется классификация блоков по 6 категориям, в зависимости от степени гладкости и наличия в них контуров. Для каждого блока вычисляется коэффициент чувствительности к аддитивному шуму, и блоки упорядочиваются в соответствии с этим коэффициентом. Далее энергия встраиваемого ЦВЗ определяется либо этим коэффициентом (зависящим от изображения), либо шагом квантования (независимым от изображения) (смотря что больше).

Для обнаружения ЦВЗ вначале выполняют вычитание исходного изображения из принятого. Затем вычисляют ДКП исходного и разностного изображений и применяют статистические методы проверки гипотез.

А6. (Cox [22]). Этот алгоритм является робастным ко многим операциям обработки сигнала. Обнаружение встроенного ЦВЗ в нем выполняется с использованием исходного изображения. Внедряемые данные представляют собой последовательность вещественных чисел с нулевым средним и единичной дисперсией. Для вложения информации используются несколько АС-коэффициентов ДКП всего изображения с наибольшей энергией. Автором предложено три способа встраивания ЦВЗ в соответствии со следующими выражениями:

, (5.27)

(5.28)

и

. (5.29)

Выражение (5.27) может использоваться в случае, когда энергия ЦВЗ сравнима с энергией модифицируемого коэффициента. В противном случае либо ЦВЗ будет неробастным, либо искажения слишком большими. Поэтому так встраивать информацию можно лишь при незначительном диапазоне изменения значений энергии коэффициентов.

При обнаружении ЦВЗ выполняются обратные операции: вычисляются ДКП исходного и модифицированного изображений, находятся разности между соответствующими коэффициентами наибольшей величины.

А7. (Barni [23]). Этот алгоритм является улучшением предыдущего, и в нем также выполняется ДКП всего изображения. В нем детектору уже не требуется исходного изображения, то есть схема слепая. Для встраивания ЦВЗ используются не наибольшие АС-коэффициенты, а средние по величине. В качестве ЦВЗ выступает произвольная строка бит.

Выбранные коэффициенты модифицируются следующим образом:

. (5.30)

Далее выполняется обратное ДКП, и производится дополнительный шаг обработки: исходное и модифицированное изображения складываются с весовыми коэффициентами:

. (5.31)

Здесь β ≈ 1 для текстурированных областей (в которых человеческий глаз мало чувствителен к добавленному шуму) и β ≈ 0 в однородных областях. Значение β находится не для каждого пиксела в отдельности, а для неперекрывающихся блоков фиксированного размера. Например, в качестве β целесообразно использовать нормализованную дисперсию блоков.

В детекторе ЦВЗ вычисляется корреляция между модифицированным изображением и ЦВЗ, .

А8. (Fridrich [24]). Алгоритм является композицией двух алгоритмов: в одном данные встраиваются в низкочастотные, в другом — в среднечастотные коэффициенты ДКП. Как показали авторы, каскадное применение двух различных алгоритмов приводит к хорошим результатам в отношении робастности. Это объясняется видимо тем, что недостатки одного алгоритма компенсируются достоинствами другого. Также, как и в двух предыдущих алгоритмах, здесь осуществляется ДКП всего изображения. Исходный сигнал детектору ЦВЗ не требуется.

Перед встраиванием ЦВЗ в НЧ коэффициенты изображение преобразуется в сигнал с нулевым средним и определенной дисперсией так, чтобы абсолютные значения коэффициентов ДКП находились в диапазоне (200,250). Авторы использовали для этой цели следующее преобразование

, (5.32)

где σ(I) — стандартное отклонение, — среднее значение яркости. ЦВЗ представляет собой последовательность чисел {-1;1}.

Далее строится индексная функция ind(t) на основе последовательности вещественных чисел, определяемой выражением

, (5.33)

где параметр . Индексная функция

. (5.34)

Таким образом, для каждого вещественного числа t можно определить его индекс. Этот индекс изменится только в том случае, если к числу t прибавить/отнять число, превосходящее значение αt. На рис. 5.12 показан вид функции ind(t) для α = 0.1.

Для внедрения бита ЦВЗ si в коэффициент cj последний изменяется не менее, чем на 100α процентов так, чтобы . Если значение коэффициента мало (меньше 1), то в него информация не встраивается.

В детекторе используются все коэффициенты, а не только наибольшие. Это связано с тем, что позиции наибольших коэффициентов ДКП исходного и модифицированного изображений могут не совпадать. Вычисляется коэффициент корреляции, взвешиваемый с энергией коэффициентов

Рис. 5.12. Индексная функция ind(c)

, (5.35)

где параметр β определяет важность взвешивания: если он равен нулю, то взвешивания не происходит. Авторы рекомендуют использовать .

Если изображение было модифицировано, то стандартное отклонение σ (I') отлично от σ(I). При знании s = σ(I)/σ(I') можно

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату