свойствами исходного изображения. Это позволяет сделать водяной знак более робастным (стойким к удалению).

Для увеличения робастности внедрения во многих алгоритмах применяются широкополосные сигналы. При этом информационные биты могут быть многократно повторены, закодированы с применением корректирующего кода, либо к ним может быть применено какое-либо другое преобразование, после чего они модулируются с помощью псевдослучайной гауссовской последовательности. Такая последовательность является хорошей моделью шума, присутствующего в реальных изображений. В то же время синтетические изображения (созданные на компьютере) не содержат шумов, и в них труднее незаметно встроить такую последовательность.

Обычно легче первоначально сгенерировать равномерно распределенную последовательность. Известен алгоритм преобразования такой последовательности в гауссовскую (алгоритм Бокса-Мюллера). Псевдокод этого алгоритма приведен ниже. Здесь ranf() — датчик равномерно распределенных случайных чисел, mean, deviation — среднее значение и СКО последовательности.

Алгоритм 6.1. Полярная форма алгоритма Бокса-Мюллера

double x1, x2, w;

do {

 x1 = 2.0 * ranf() — 1.0;

 x2 = 2.0 * ranf() — 1.0;

 w = x1 * x1 + x2 * x2;

} while (w >= 1.0);

w = sqrt((-2.0 * log(w)) / w);

double y1 = mean + x1 * w * deviation;

double y2 = mean + x2 * w * deviation;

Для извлечения внедренной информации в аддитивной схеме встраивания ЦВЗ обычно необходимо иметь исходное изображение, что достаточно сильно ограничивает область применения подобных методов.

Рядом авторов [22, 4, 34] были предложены слепые методы извлечения ЦВЗ, вычисляющие корреляцию последовательности w со всеми N коэффициентами полученного изображения f*:

. (6.6)

Затем полученное значение коэффициента корреляции сравнивается с некоторым порогом обнаружения ,

. (6.7)

Основным недостатком этого метода является то, что само изображение в этом случае рассматривается, как шумовой сигнал. Существует гибридный подход (полуслепые схемы), когда часть информации об исходном изображении доступно в ходе извлечения информации, но неизвестно собственно исходное изображение.

Корреляционный метод позволяет только обнаружить наличие или отсутствие ЦВЗ. Для получения же всех информационных битов нужно протестировать все возможные последовательности, что является крайне вычислительно сложной задачей.

Наиболее ярким представителем алгоритмов внедрения ЦВЗ на основе использования широкополосных сигналов является алгоритм Кокса, представленный ниже.

А17 (Cox, [8-10]).

ЦВЗ представляет собой последовательность псевдослучайных чисел, распределенных по гауссовскому закону, длиной 1000 чисел.

Для модификации отбираются 1000 самых больших коэффициентов дискретного косинусного преобразования (ДКП).

Встраивание информации выполняется в соответствии с выражением (6.2), а извлечение ЦВЗ в соответствии с выражением (6.4).

Достоинством алгоритма является то, что благодаря выбору наиболее значимых коэффициентов водяной знак является более робастным при сжатии и других видах обработки сигнала.

Вместе с тем алгоритм уязвим для атак, предложенных Гравером в [1,2,3]. Кроме того, операция вычисления двумерного ДКП трудоемка.

А18 (Barni, [4]).

ЦВЗ представляет собой последовательность бинарных псевдослучайных чисел . Длина последовательности определяется размерами исходного изображения M и N, где i= 0, …,.

При встраивании информации вначале выполняется четырехуровневое (l = 4) вейвлет-преобразование с использованием фильтров Добеши-6. Для внедрения водяного знака используются только детальные поддиапазоны первого подуровня разложения. При этом в качестве кандидатов для модификации выбираются все коэффициенты детальных поддиапазонов (LH, HL, HH), которые изменяются с учетом локальной чувствительности к шумам:

, (6.8)

где

.

Множитель в этом выражении определяется поддиапазоном и уровнем разрешения:

, (6.9)

второй множитель определяется локальной яркостью:

, (6.10)

и последний множитель определяется локальной дисперсией или степенью текстурированности.

В детекторе водяной знак обнаруживается при непосредственном вычислении значения корреляции wi с коэффициентами вейвлет-преобразования (ВП). Таким образом, возможно обнаружение ЦВЗ вслепую, без знания исходного изображения.

Данная схема использует модель зрительной системы человека, описанную в [15]. Каждое бинарное значение водяного знака предварительно домножается на весовой коэффициент, полученный на основе модели чувствительности человеческого зрения к шуму. Это позволяет добиться незаметности ЦВЗ

А19 (G.Nicchiotti [7, 21]).

ЦВЗ представляет собой массив псевдослучайных чисел, распределенных по гауссовскому закону, размером 32*32 = 1024 числа.

Исходное изображение подвергается вейвлет-преобразованию для того, чтобы получить низкочастотное изображение размером 32*32.

Для внедрения ЦВЗ отбираются все коэффициенты LL поддиапазона.

Встраивание информации в эти коэффициенты выполняется в соотвествии с выражением

, (6.11)

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату