решение будет значительно проще. В этом случае мы задаемся вопросом, сколько должно быть проигравших, чтобы определить одного чемпиона? Понятно, что проигравших должно быть 24. Чтобы появились 24 проигравших, нужно провести 24 игры. Ответ найден. Взгляд на задачу с другой точки зрения — интересный подход, который может оказаться полезным в различных ситуациях.

Для получения еще одной альтернативной точки зрения на задачу представьте, что в составе наших 25 команд одна является профессиональной баскетбольной командой, которая гарантированно побеждает в турнире. Каждая из оставшихся 24 команд при встрече с профессиональной командой неизбежно проигрывает. И опять мы видим, что для определения чемпиона нужно провести 24 игры. Это должно показать вам действенность данного метода решения задач. Посмотрим теперь, какие задачи можно эффективно решать с помощью принятия другой точки зрения.

Задача 4.1

На контуре круга O выбрана точка P (рис. 4.1). Из этой точки к взаимно перпендикулярным диаметрам проведены перпендикуляры PA и PB. Если AB = 12, то чему равна площадь круга, выраженная через π?

Обычный подход

Большинство пытается решить задачу с помощью теоремы Пифагора, поскольку треугольники PAB и OAB являются прямоугольными. Такой подход, однако, заводит в тупик из-за того, что для применения теоремы Пифагора недостаточно информации.

Образцовое решение

Эту задачу можно решить несколькими способами. Один из них — рассмотрение экстремумов. Предположим, что точка P на контуре круга совпадает с точкой Q. В этом случае отрезок AB должен совпадать с отрезком QO, который представляет собой радиус круга. Таким образом, площадь круга равна 144π.

Задачу также можно решить, посмотрев на нее с другой точки зрения. Четырехугольник с тремя прямыми углами является прямоугольником. Отрезок AB — диагональ прямоугольника. PO также диагональ прямоугольника. Поскольку диагонали прямоугольника равны, радиус круга PO = 12, а площадь круга равна 144π.

Задача 4.2

Стандартную колоду из 52 игральных карт делят случайным образом на две стопки по 26 карт в каждой. Как количество красных карт в одной стопке соотносится с количеством черных карт в другой?

Обычный подход

При решении этой задачи, как правило, количество черных и красных карт в каждой стопке представляют следующим образом:

B1 = количество черных карт в стопке 1;

B2 = количество черных карт в стопке 2;

R1 = количество красных карт в стопке 1;

R2 = количество красных карт в стопке 2.

Поскольку общее количество черных карт равно 26, можно записать, что B1 + B2 = 26, а поскольку общее количество карт в стопке 2 равно 26, мы получаем R2 + B2 = 26.

Вычитание второго уравнения из первого, дает: B1 — R2 = 0. Таким образом, B1 = R2, т. е. количество красных карт в одной стопке равно количеству черных карт в другой. Хотя такое решение дает ответ, назвать его изящным нельзя. Наша цель в этой главе — найти такое решение, которое демонстрирует красоту и силу математики.

Образцовое решение

В качестве альтернативы возьмем все красные карты из стопки 1 и обменяем их на черные карты из стопки 2. Теперь все черные карты находятся в одной стопке, а красные — в другой. Таким образом, количество красных карт в одной стопке и количество черных карт в другой стопке должны быть равными. Задачу позволяет решить простая логика — нужно лишь взглянуть на эту задачу с другой точки зрения.

Задача 4.3

Лоэнгрину дали четыре отрезка цепи (рис. 4.2), в каждом из которых три звена. Покажите, как соединить эти четыре отрезка в замкнутую цепь, разомкнув и сомкнув не более трех звеньев.

Обычный подход

Обычно сначала пытаются разомкнуть последнее звено одного отрезка, присоединить его к другому отрезку и получить цепь из 6 звеньев. Затем размыкают звено третьего отрезка и присоединяют его к 6-звенной цепи, получая 9-звенную цепь. Присоединив последний отрезок к 9-звенной цепи, получают 12-звенную цепь, которая, однако, не является замкнутой. Таким образом, традиционный подход обычно завершается неудачей. Некоторые пробуют другие комбинации размыкания/замыкания звеньев каждого отрезка цепи, однако такой подход не приносит желаемого результата.

Образцовое решение

Эта задача хорошо решается с помощью стратегии принятия другой точки зрения. Можно даже сказать, что такой подход просто неоценим в данном случае. Вместо того, чтобы пытаться разомкнуть и замкнуть одно звено на каждом отрезке цепи, другая точка зрения предполагает размыкание всех звеньев одного отрезка цепи и использование этих звеньев для соединения трех оставшихся отрезков цепи и получения требуемой замкнутой цепи. Это быстро приводит к правильному решению.

Задача 4.4

Какие натуральные числа менее 100 дают остаток 3 при делении на 7 и остаток 4 при делении на 5?

Обычный подход

Рассмотрим ряд натуральных чисел менее 100, которые дают остаток 3 при делении на 7: {3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 49}. Теперь рассмотрим ряд натуральных чисел менее 100, которые дают остаток 4 при делении на 5: {4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99}.

Сравнив эти два ряда, находим три совпадающих числа: 24, 59 и 94.

Образцовое решение

Попробуем взглянуть на эту задачу с другой точки зрения. Искомые числа должны иметь форму 7n + 3, а также форму 5k + 4, где n и k — целочисленные неизвестные. Объединим эти величины так, чтобы искать числа в форме 35r + p, где r и p — целочисленные неизвестные. Первый ряд чисел, имеющих форму 7n + 3, также можно представить, как 35r + 3, 35r + 10, 35r + 17, 35r + 24 и 35r + 31. Только одно из этих чисел имеет также форму 5k + 4, а именно 35r + 24. Для того, чтобы узнать, какие числа менее 100, удовлетворяют этому соотношению, зададим r = 0, 1 и 2 и получим три искомых числа: 24, 59 и 94.

Задача 4.5

Какое из следующих двух выражений больше, √5 + √8 или √4 + √10

Обычный подход

Учитывая нынешнее распространение калькуляторов, не удивительно, что люди обычно извлекают квадратный корень из каждого числа, затем определяют их суммы и получают требуемый ответ. Хотя такой подход довольно эффективен, его, конечно, не назовешь изящным.

Образцовое решение

Взглянем на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату