это подход к решению с другой точки зрения). Мы ищем расстояние, которое пролетела пчела. Если знать время, в течение которого летала пчела, то определить пройденное расстояние будет легко, поскольку скорость пчелы известна.

Время полета пчелы узнать несложно, так как оно равно времени движения поездов до столкновения. Для определения времени t движения поездов составим следующие уравнения.

Расстояние, пройденное первым поездом равно 60t, а второго — 40t. Суммарное расстояние, пройденное поездами, составляет 800 км. Таким образом, 60t + 40t = 800, а t = 8 часам. Иначе говоря, пчела летала 8 часов. Теперь можно найти расстояние, которое пролетела пчела: 8 × 80 = 640 км. Внешне невероятно трудное задание определить расстояние, пройденное летающей туда-сюда пчелы, было сведено к довольно обычной задаче «на равномерное движение», решение которой очевидно.

Задача 6.7

Имеется произвольно начерченная пентаграмма, показанная на рис. 6.3. Определите, чему равна сумма острых углов при ее вершинах.

Обычный подход

Большинство, к сожалению, пытается измерить углы с помощью транспортира (надо надеяться, с достаточной точностью). На основании полученного результата строятся предположения о том, какой должна быть эта сумма.

Образцовое решение

Мы же воспользуемся стратегией решения упрощенной аналогичной задачи. Иначе говоря, поскольку форма, или правильность не определена, предположим, что это пентаграмма, вписанная в окружность, как показано на рис. 6.4. Если посмотреть на острые углы пентаграммы, можно заметить, что каждый из них является вписанным в окружность углом, равным по определению половине дуги, на который он опирается. Например, Глядя на дуги оставшихся четырех острых углов пентаграммы, видно, что в сумме они составляют полную окружность. Итак, мы знаем, что сумма углов равна половине суммы дуг, на которые они опираются, т. е. она равна половине окружности, или 180º.

Задача 6.8

Какое из следующих чисел имеет наибольшее значение?

148, 242, 336, 430, 524, 618, 712, 86

Обычный подход

С помощью компьютерной программы или даже калькулятора, который может оперировать большими числами, можно попытаться реально определить значение каждого числа. Однако такой подход утомителен и требует много времени. Тем не менее он имеет право на существование.

Образцовое решение

Воспользуемся стратегией решения более простой аналогичной задачи. Даже при быстром взгляде на числа видно, что показатели степени кратны 6. Если извлечь корень шестой степени из каждого члена ряда (или возвести его в степень), то можно упростить сравнение. Иначе говоря, мы знаем, что все исходные числа являются производными 6-й степени. Таким образом, наибольшее значение в следующем ряду будет связано с наибольшим значением исходных чисел, которые требуется сравнить.

18, 27, 36, 45, 54, 63, 72, 81.

Значения чисел в этом ряду определить несложно:

27 = 128; 36 = 729; 45 = 1024; 54 = 625; 63 = 216.

Остальные числа явно меньше. Итак, наибольшее значение в ряду из восьми чисел, возведенных в степень, имеет 430, которое можно представить как (45)6.

Задача 6.9

Чтобы растянуть удовольствие от бутылки вина объемом 16 унций, Дэвид придумал следующее. В первый день он выпивает только 1 унцию вина и доливает в бутылку столько же воды. Во второй день он выпивает 2 унции смеси вина с водой и опять доливает в бутылку столько же воды. На третий день он выпивает 3 унции смеси вина с водой и вновь доливает в бутылку столько же воды. Процесс продолжается до тех пор, пока на 16 день Дэвид не опорожняет всю бутылку объемом 16 унций. Сколько всего унций воды выпил Дэвид?

Обычный подход

В задаче вроде этой очень легко утонуть в деталях. Некоторые, наверное, уже составляют таблицу, вносят в нее данные об объеме вина и воды в бутылке каждый день и пытаются вычислить пропорциональные количества той и другой жидкости, выпиваемой Дэвидом каждый день. Задачу легче решить, взглянув на нее с другой точки зрения, а именно, задавшись вопросом, сколько воды Дэвид добавляет в смесь каждый день. Поскольку он в конечном итоге опорожняет бутылку (на 16-й день), и в ней ничего не остается, Дэвид, надо полагать, выпивает всю долитую воду. В первый день он долил 1 унцию воды, во второй — 2 унции, в третий — 3 унции. На 15-й день в бутылку было добавлено 15 унций воды. (Не забывайте, что в 16-й день вода не добавлялась.) Таким образом, количество воды, выпитой Дэвидом, равно 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 унциям.

Образцовое решение

Хотя приведенное выше решение имеет право на существование, можно рассмотреть чуть более простую аналогичную задачу и определить, сколько жидкости Дэвид выпил в целом, а потом просто вычесть из результата объем вина, т. е. 16 унций.

Таким образом, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136, и 136 − 16 = 120.

Дэвид выпил 136 унций жидкости, из которой 120 унций приходилось на воду.

Глава 7

Организация данных

Одной из наиболее важных стратегий является организация данных, хотя, на первый взгляд, это понятно и без слов. Иначе говоря, все должны автоматически упорядочивать данные из условий задачи. В жизни мы делаем это подсознательно каждый день.

Так, приступая к заполнению налоговой декларации каждую весну, мы автоматически организуем данные в определенном порядке без всяких подсказок. От того, как будут организованы квитанции, чеки, формы W-2 и т. п., сильно зависит заполнение сложных форм налоговой отчетности.

Большинство людей составляют тщательно организованный список покупок, прежде чем отправиться в супермаркет. Они могут разбивать покупки по категориям, по месту расположения в магазине или по степени необходимости. Аналогичным образом, отправляясь в турпоездку, мы чаще всего составляем перечень того, что хотим посмотреть. При этом список можно изложить на бумаге или просто держать в голове.

Когда крупные организации проводят опросы, нет ничего необычного в том, что они получают разные результаты, — все зависит от того, как в каждом случае организуются одни и те же данные.

В задачах, включающих множество данных, людей нередко приводит в замешательство представление этих данных. Умение организовывать данные в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату