слушателей был Андрей Линде – молодой ученый из московского Физического института имени Лебедева[35]. Он заметил, что проблема пузырьков, которые не могут объединиться, станет неактуальна, если предположить, что пузырьки эти настолько велики, что один вмещает всю нашу область Вселенной. Для этого необходимо, чтобы переход от симметричного состояния к состоянию с нарушенной симметрией внутри пузыря происходил очень медленно, а это вполне допускают великие теории объединения. Идея Линде о медленном нарушении симметрии была хороша, но позже я понял, что его пузыри должны были превышать Вселенную по размеру в соответствующий момент! Я также показал, что симметрия к этому моменту должна нарушиться везде, не только внутри пузырей, и результатом должна быть однородная Вселенная – как раз такая, какую мы наблюдаем. Эта идея меня очень взволновала, и я рассказал о ней моему аспиранту Яну Моссу. Позднее из научного журнала мне прислали статью Линде с просьбой дать отзыв о возможности ее публикации, и будучи другом автора, я оказался в весьма неловком положении. Отвечая на письмо, я отметил неточность в оценке размеров пузырей – которые должны быть больше Вселенной, – однако указал, что в остальном идея о медленном нарушении симметрии очень хороша, и рекомендовал статью к публикации в исходном виде. Ведь Линде потребовалось бы несколько месяцев, чтобы исправить ее, так как все, что он посылал на Запад, проходило советскую цензуру, а цензоры научных статей не отличались ни квалификацией, ни расторопностью[36]*. Научной справедливости ради, совместно с Яном Моссом я написал короткую статью в тот же журнал, где обратил внимание на выявленную проблему и показал, как ее можно решить.

На следующий день после возвращения из Москвы я отправился в Филадельфию, где мне должны были вручить медаль Франклина – от Института Франклина. Мой секретарь Джуди Фелла задействовала все свое обаяние – которым совсем не была обделена, – чтобы убедить руководство British Airways предоставить нам два бесплатных билета на «Конкорд» в качестве рекламной акции. Но из-за сильного дождя я задержался и опоздал на самолет. Тем не менее я в конце концов добрался до Филадельфии и получил свою медаль. Потом меня попросили провести в Дрексельском университете в Филадельфии семинар на тему инфляционной Вселенной, и это мероприятие я спланировал так же, как и московское.

Независимо от Линде через несколько месяцев очень похожую идею высказали Пол Стейнхардт и Андреас Альбрехт из Пенсильванского университета. Теперь их вместе с Линде считают создателями так называемой «новой инфляционной модели», основанной на идее медленного нарушения симметрии. (Старая инфляционная модель – это исходная гипотеза Гута о быстром нарушении симметрии с образованием пузырей.)

Новая инфляционная модель была хорошей попыткой объяснить, почему Вселенная такова, какова она есть. Но я – и ряд других исследователей – показали, что как минимум в ее исходном виде она предсказывает куда бо́льшие флуктуации температуры реликтового фона, чем те, что реально наблюдаются. Результаты последующих исследований также поставили под сомнение возможность фазового перехода требуемого типа в очень ранней Вселенной. Я лично считаю, что новая инфляционная модель как научная теория уже умерла, хотя многие, похоже, ничего не слышали о ее конце и продолжают писать статьи, как если бы она оставалась жизнеспособной. В 1983 году Линде предложил более реалистичную теорию под названием «хаотичная инфляционная модель». В ней нет фазового перехода и переохлаждения: их замещает поле с нулевым спином, которое из-за квантовых флуктуаций оказывается очень сильным в некоторых областях ранней Вселенной. В этих областях энергия поля ведет себя подобно космологической постоянной и проявляет себя как гравитационное отталкивание, тем самым заставляя соответствующие области расширяться инфляционным образом. По мере их расширения энергия поля в этих областях медленно уменьшается, пока инфляционное расширение не сменится расширением по типу модели горячего Большого взрыва. Одну из этих областей мы знаем как нашу Вселенную. Эта модель обладает всеми достоинствами более ранних инфляционных моделей, но не зависит от сомнительного фазового перехода и к тому же может порождать разумных размеров флуктуации температуры реликтового излучения, которые согласуются с наблюдениями.

Работа с инфляционными моделями показала, что современное состояние Вселенной могло быть продуктом ряда самых разных начальных конфигураций. Это важно – ведь, как следствие, начальное состояние части Вселенной, которую мы занимаем и наблюдаем, не нужно было тонко настраивать и тщательно подбирать. Так что мы можем, если пожелаем, применить слабый антропный принцип, чтобы объяснить, почему Вселенная именно такая, какой мы ее видим сегодня. Но разумеется, было бы неверно утверждать, что любая начальная конфигурация должна эволюционировать во вселенную, подобную нашей. Для примера стоит рассмотреть совершенно другое состояние современной Вселенной – клочковатое и неоднородное. Используя законы физики, нам под силу просчитать эволюцию такой вселенной назад во времени и определить ее конфигурацию в более ранние эпохи. Согласно теоремам о сингулярности классической общей теории относительности у истоков такой вселенной вполне могла стоять сингулярность типа Большого взрыва. Если рассчитать эволюцию такой вселенной вперед по времени в соответствии с известными законами, получатся заданные клочковатость и неоднородность. Таким образом, начальные конфигурации, не ведущие ко вселенной, похожей на нашу, должны были существовать. Стало быть, даже инфляционная модель не позволяет понять, почему начальная конфигурация не смогла породить нечто, отличное от наблюдаемой нами Вселенной. Следует ли обратиться к антропному принципу за объяснением? Неужели это все счастливое стечение обстоятельств? Это был бы ответ отчаявшегося, оставившего всякую надежду понять порядок, лежащий в основе космоса.

Чтобы установить, как началась Вселенная, нужно знать законы, действовавшие в начале времен. Если классическая общая теория относительности верна, то, согласно доказанным Роджером Пенроузом и мною теоремам, начало времен – это точка с бесконечной плотностью и бесконечной кривизной пространства-времени. В такой точке никакие известные физические законы не действуют. Можно предположить, что в сингулярностях действовали новые законы, но чрезвычайно сложно даже сформулировать организующие принципы для этих патологических точек, тем более что мы не располагаем наблюдательными данными, которые могли бы указать нам путь. Однако теоремы о сингулярностях действительно утверждают, что гравитационное поле становится настолько сильным, что важно учитывать эффекты квантовой механики: классическая теория уже не годится для описания Вселенной. Посему для описания самых ранних этапов эволюции Вселенной необходима квантовая теория гравитации. Как будет видно дальше, квантовая теория гравитации предполагает, что обычные законы физики действуют везде и всегда, включая начало времен: совсем необязательно формулировать новые законы для сингулярностей, потому что в квантовой теории можно обойтись без сингулярностей.

Полная и непротиворечивая теория, которая бы объединяла квантовую механику и гравитацию, пока еще не создана. Но мы уже знаем некоторые свойства, которыми она должна обладать. В частности, это применимость предложенной Фейнманом формулировки квантовой теории через суммы по траекториям. Этот подход предполагает, что у частицы не одна-единственная траектория в пространстве-времени – как в случае классической, неквантовой теории: частица, напротив, движется в пространстве-времени всеми возможными путями, и каждый ее путь определяется парой чисел – амплитудой, то есть размахом волны, и положением волны в цикле (фазой). Вероятность, что частица пройдет через заданную точку, рассчитывается суммированием волн, соответствующих всем проходящим через эту точку траекториям. Правда, реальные попытки вычислить суммы связаны с серьезными техническими проблемами. Единственный способ обойти их состоит в следующем: нужно суммировать волны, связанные с траекториями частицы, не в действительном, реальном времени,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату