суммирование по траекториям всех возможных евклидовых разновидностей пространства-времени, не имеющих границ.

В рамках «безграничной» гипотезы ничтожно мала вероятность того, что Вселенная эволюционирует согласно большинству из возможных траекторий, но при этом имеется семейство траекторий, более вероятных, чем остальные. Их можно изобразить при помощи поверхности Земли: расстояние от Северного полюса представляет мнимое время, а размер окружности, все точки которой находятся на постоянном расстоянии от Северного полюса, – пространственный размер Вселенной. Вселенная начинается на Северном полюсе в виде мельчайшей точки. По мере продвижения на юг дуги параллелей на постоянном расстоянии от Северного полюса увеличиваются, что соответствует расширению Вселенной с течением мнимого временем (рис. 8.1). Вселенная достигает максимального размера на экваторе, после чего начинает сжиматься, по мере того как прирастает мнимое время, пока наконец не схлопнется до размеров точки на Южном полюсе. И хотя на Северном и Южном полюсах диаметр Вселенной равен нулю, эти точки не будут сингулярностями, точнее, они будут не более сингулярны, чем Северный и Южный полюса Земли. Законы физики там должны соблюдаться так же, как на противоположных концах планетной оси.

Рис. 8.1

А вот в действительном времени история Вселенной будет выглядеть совсем иначе. Примерно 10–20 миллиардов лет назад она имела бы минимальный размер, равный максимальному радиусу траектории в мнимом времени. В более поздние действительные моменты времени Вселенная расширялась по хаотичной инфляционной модели, предложенной Линде (но теперь нет необходимости предполагать, что Вселенная сотворена в некоем требуемом состоянии). Вселенная увеличилась бы до очень большого размера (рис. 8.1), а потом ей предстояло бы снова коллапсировать в нечто, в действительном времени имеющее вид сингулярности. Так что в некотором смысле мы все равно обречены, даже если будем держаться подальше от черных дыр. Сингулярностей нет, только если представить историю Вселенной в мнимом времени.

Если Вселенная действительно находится в таком квантовом состоянии, то в мнимом времени в ее истории не должно быть сингулярностей. Поэтому может показаться, что мои недавние работы полностью перечеркивают результаты моих более ранних работ о сингулярностях. Но, как я отметил выше, прикладное значение теорем о сингулярностях в другом: они показали, что гравитационное поле должно быть настолько сильным, чтобы нельзя было более пренебрегать квантовыми эффектами. Это, в свою очередь, привело меня к мысли, что в мнимом времени Вселенная может быть конечной, но не иметь границ и сингулярностей. При переходе к действительному времени, в котором мы существуем, сингулярности все же появляются. Бедного астронавта, падающего в черную дыру, ждет печальный конец. Он не встретил бы никаких сингулярностей, только если бы жил во мнимом времени.

Исходя из сказанного, кто-то может заключить, будто так называемое мнимое время на самом деле и есть действительное, реальное время, а то, что мы называем действительным временем, – всего лишь плод нашего воображения. В действительном времени у Вселенной есть начало и конец – они находятся в сингулярностях, образующих границы пространства-времени, где законы физики перестают действовать. Но во мнимом времени нет ни сингулярностей, ни границ. Так что не исключено, что время, называемое нами мнимым, в действительности более фундаментально, а то, что мы называем действительным временем, – всего лишь концепция, и мы придумали ее, чтобы описать, как, на наш взгляд, выглядит Вселенная. Но вспомним, о чем говорилось в главе 1: научная теория – это всего лишь математическая модель, созданная для описания наших наблюдений; она существует только в нашем воображении. Так что, может быть, вопрос «Что реально – действительное или мнимое время?» вообще не имеет смысла. Это всего только вопрос выбора – выбора более удобного инструмента для описания.

Можно также применить суммирование по траекториям, имея в виду и гипотезу об отсутствии границ – чтобы установить, какие свойства Вселенной, вероятнее всего, встречаются одновременно. Например, можно рассчитать вероятность того, что Вселенная расширяется с почти одинаковой скоростью во всех направлениях в эпоху, когда ее плотность равна современному значению. В рассмотренных до сих пор упрощенных моделях эта вероятность оказывается высокой. То есть из условия отсутствия границ с очень высокой вероятностью следует, что современная скорость расширения Вселенной практически одинакова во всех направлениях[38]. Это находится в согласии с результатами наблюдений реликтового излучения: интенсивность этого излучения практически одинакова во всех направлениях. Если бы Вселенная в некоторых направлениях расширялась быстрее, чем в других, то интенсивность излучения в этих направлениях была бы ниже из-за дополнительного красного смещения.

В настоящее время предпринимаются попытки получить другие предсказания на основе гипотезы об отсутствии границ. Особый интерес представляет мера небольших отклонений от равномерного распределения плотности в ранней Вселенной, которые привели к возникновению сначала галактик, потом звезд, а затем и нас с вами. Из принципа неопределенности следует, что ранняя Вселенная не могла быть совершенно однородной – должны были существовать флуктуации в положениях и скоростях частиц. Исходя из гипотезы об отсутствии границ мы приходим к выводу, что Вселенная у своих истоков должна была иметь минимально возможную неоднородность, допускаемую принципом неопределенности. После этого Вселенная прошла этап быстрого расширения – совсем как в инфляционных моделях. В тот период первичные неоднородности должны были увеличиться в размерах настолько, чтобы объяснить происхождение наблюдаемых вокруг нас структур. В 1992 году спутник COBE зафиксировал очень малые отклонения интенсивности реликтового излучения по небу[39]. Характер зависимости этих вариаций от направления, похоже, находится в согласии с предсказаниями инфляционной модели и гипотезы об отсутствии границ. Так что последняя является хорошей научной теорией в том смысле, который вкладывал в это понятие Карл Поппер: ее вполне можно опровергнуть при помощи наблюдений. Но пока ее предсказания подтверждаются. В расширяющейся Вселенной с небольшими неоднородностями в распределении вещества под действием тяготения более плотные области должны перестать расширяться и перейти к сжатию. Это должно привести к образованию галактик, звезд и, наконец, таких незначительных персонажей, как мы, люди. Стало быть, сложные структуры, которые мы наблюдаем в космосе, можно объяснить при помощи гипотезы об отсутствии границ и квантового принципа неопределенности[40]. Одна только мысль о том, что пространство и время могут образовывать замкнутую поверхность без границ, накладывает глубокий отпечаток на представления о роли Бога в делах космоса. Научные теории с успехом справляются с описанием событий, и потому большинство людей пришли к мнению, что Бог позволяет Вселенной эволюционировать в соответствии с некоторой системой законов, не вмешиваясь и не нарушая их. Однако законы физики молчат о том, какой Вселенная была в эпоху своего зарождения: завести механизм, запустить его – все так же прерогатива Бога. Пока мы считаем, что у Вселенной было начало, в картине мира сохраняется место и для Творца. Но если Вселенная и вправду полностью самодостаточна – не имеет ни края, ни границ, – у нее нет также начала и конца: она просто есть. Так зачем же тогда Создатель?

Глава девятая. Стрела времени

В предыдущих главах мы увидели, как менялись наши представления о природе времени. До начала XX века время считали абсолютным. То есть любому событию можно было присвоить уникальный номер, соответствующий некоему моменту во времени, и все правильные часы должны быть единодушны в оценке интервала между двумя выбранными эпизодами. Но открытие постоянства скорости света для всех наблюдателей независимо от параметров их движения привело к созданию теории относительности – и она задекларировала отказ от идеи о едином абсолютном времени. Теперь каждый наблюдатель ведет индивидуальный отсчет времени

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату