направление на противоположное (электрон как бы “перевернется”), атом перейдет в состояние с меньшей энергией и излучит квант с энергией 6×10-6 эв, соответствующий радиоизлучению с длиной волны 21 см. Это еще одна важная спектральная линия водорода, существование которой позволяет изучать вещество в самых холодных областях космического пространства. В спектрах некоторых тел, особенно горячих звезд, наблюдаются линии гелия. Спектр ионизованного гелия очень похож на водородный и наблюдается у самых горячих звезд. Линии нейтрального гелия встречаются чаще. Еще до того, как гелий был обнаружен на Земле, наиболее интенсивная из его спектральных линий в видимой части спектра (желтая линия с l = 5876 Å ) была замечена в спектре Солнца, что и послужило поводом к названию этого элемента (гелиос, по-гречески, Солнце). Рядом с этой линией гелия, обозначаемой D3, находятся две интенсивные линии D1 и D2 с длинами волн 5896 и 5890 Å, часто наблюдаемые в спектрах звезд и межзвездной среды. Это резонансные линии натрия. Еще более интенсивными часто бывают резонансные линии ионизованного кальция, расположенные у фиолетовой границы видимого спектра. Они обозначаются Н (l = 3968 Å) и К ( l = 3934 Å ). В спектрах небесных тел встречается также множество линии других атомов и некоторых простейших молекулярных соединений. Характерной особенностью спектров некоторых астрономических объектов являются наблюдаемые в них запрещенные линии. С одной из таких линий, излучаемой межзвездным водородом (l = 21 см), мы только что познакомились. Другие линии, часто наиболее яркие, лежат в видимой области спектра (например, эмиссионные линии в солнечной короне, небулярные линии в спектрах туманностей, авроральные линии, возбуждаемые в верхних слоях земной атмосферы). Тщетность попыток воспроизвести эти линии в земных лабораториях заставляла вначале предположить существование неизвестных гипотетических элементов “короний”, “небулий” и т.д. Как мы видели, подобное предположение оказалось справедливым только в отношении гелия. Во всех остальных случаях неизвестные линии удалось отождествить со спектрами хорошо известных химических элементов, находящихся, однако, в особых условиях возбуждения. Так, например, оказалось, что корональные линии излучаются многократно ионизованными атомами железа, никеля, аргона, кальция и других элементов, у которых “оторвано” по 10-15 электронов. Небулярные и авроральные линии оказались принадлежащими однократно и дважды ионизованному кислороду. Появление запрещенных линий свидетельствует об очень большой разреженности газа. Как и в случае радиолинии 21 см, чтобы излучить запрещенную линию, атом должен находиться сравнительно долго в возбужденном состоянии. Хотя для оптических запрещенных линий это время не так велико, как для линии 21 см, все же оно достигает десятых долей или даже целых секунд, т.е. в сотни миллионов раз больше, чем для обычных спектральных линий. Чтобы произошло спонтанное излучение, атом за это время не должен сталкиваться с другими частицами, чтобы не “потерять” энергию своего возбуждения. Следовательно, в разреженном газе, излучающем запрещенные линии, промежуток времени между последовательными столкновениями частиц должен быть порядка секунды. Полагая в формуле (7.17) s = 10 -16 см2 и v* = 108 см/сек, что соответствует условиям в солнечной короне, получаем, что концентрация частиц должна быть не больше 108 частиц/см3. В газовых туманностях концентрация частиц во много раз меньше. Поляризация излучения. Электромагнитное излучение, возникающее в результате каждого отдельного элементарного процесса, характеризуется определенной плоскостью, в которой лежит вектор напряженности колеблющегося электрического поля (плоскость распространения). Перпендикулярная к ней плоскость, содержащая вектор колеблющегося магнитного поля, называется плоскостью поляризации. Чаще всего наблюдаемое излучение неполяризовано, так как оно возникает в результате сложения одновременного излучения очень большого числа атомов, поляризованного вдоль всевозможных направлений. Такой неполяризованный свет называется естественным (рис. 88).

Пропуская свет через специальные поляризаторы (например, кристаллы кварца, полевого шпата) или поляроидные пленки, на которые нанесены эмульсии из некоторых кристаллических веществ, можно из данного излучения выделить часть, поляризованную вдоль основной плоскости поляризатора или поляроида. Поворачивая эту плоскость, измеряют интенсивность поляризованного излучения в различных направлениях. Если по всем направлениям интенсивность оказывается одинаковой, то свет не поляризован. Если наблюдается максимум поляризации вдоль некоторого направления, то в перпендикулярной к нему плоскости обязательно имеет место минимум поляризации. Разность интенсивностей вдоль направлений максимума и минимума поляризации, отнесенная к их сумме, называется степенью поляризации:

(7.39)

В простейшем случае поляризация возникает при отражении от некоторых поверхностей, особенно при определенных значениях углов падения и отражения. Так, например, свет, отраженный под углом 58° пластинкой из обычного стекла, почти полностью поляризован, причем плоскость поляризации перпендикулярна к плоскости стекла. Это свойство отраженного света используется для изучения природы отражающих поверхностей, например планет. При рассеянии света на большом количестве отдельных частиц также может возникнуть поляризация. Особенно важен случай рассеяния на свободных электронах. В направлении, составляющем с первоначальным угол ровно 90°, рассеяние на свободных электронах полностью (на 100%) поляризовано. Кроме того, поляризация возникает при рассеянии на мелких пылинках, а также при рассеянии отдельными молекулами. Так, солнечный свет, рассеянный молекулами воздуха, что придает голубой цвет небу, оказывается частично поляризованным. Спектральные линии в магнитном поле. Спектральные линии, излучаемые атомом, находящимся в магнитном поле, расщепляются на несколько тесно расположенных компонентов. В простейшем случае спектральная линия разделяется на две, если наблюдать вдоль силовых линий магнитного поля, и на три, если смотреть поперек них. Излучение в каждой из этих линий особым образом поляризовано. Это явление называется эффектом Зеемана. Расстояние между компонентами расщепленных спектральных линий пропорционально напряженности магнитного поля. Это дает возможность на основании спектроскопических наблюдений измерять космические магнитные поля. На рис. 89 приведен спектр солнечного пятна, показывающий присутствие сильного магнитного поля напряженностью около 1000 эрстед.

§ 107. Доплеровское смещение спектральных линий

Если расстояние между излучающим телом и наблюдателем меняется, то скорость их относительного движения имеет составляющую вдоль луча зрения, называемую лучевой скоростью. По линейчатым спектрам лучевые скорости могут быть измерены на основании эффекта Доплера, заключающегося в смещении спектральных линий на величину, пропорциональную лучевой скорости, вне зависимости от удаленности источника излучения. При этом, если расстояние увеличивается (лучевая скорость положительна), то смещение линий происходит в красную сторону, а в противном случае - в синюю. Объяснить это явление можно на основании следующих элементарных рассуждений. Вообразим наблюдателя, воспринимающего от объекта луч света. Предположим, что этот луч представляет собой отдельное непрерывное электромагнитное колебание (цуг волн). Пусть за 1 сек источник излучает n волн длиной l каждая. Так как n - частота, то . Неподвижный относительно источника наблюдатель за ту же одну секунду воспримет столько же (т.е. n ) волн. Теперь пусть источник или наблюдатель движутся с относительной скоростью vr . Тогда по отношению к неподвижному цугу волн наблюдатель за 1 сек пройдет расстояние vr , на котором укладывается волн. Таким образом, в случае движения вдоль луча зрения наблюдатель воспримет не n волн, а на меньше, если расстояние увеличивается, и на больше, если оно уменьшается. Следовательно, изменится частота наблюдаемого излучения n . Обозначая это изменение частоты через Dn и принимая, что положительным значениям vr соответствует увеличение расстояния, получим Учитывая зависимость между n и l , мы видим, что при движении вдоль луча зрения изменяется не только частота воспринимаемого излучения, но и длина его волны соответственно на величину Объединяя это выражение с предыдущим, найдем окончательную формулу для величины доплеровского смещения спектральных линий

(7.40)

Более строгий вывод формулы для доплеровского смещения требует применения теории относительности. При этом получается выражение, которое при vr с очень мало отличается от формулы (7.40). Кроме того, оказывается, что смещение спектральных линий вызывается не только движениями вдоль луча зрения, но и перпендикулярными к нему перемещениями (так называемый поперечный эффект Доплера). Однако он, как и релятивистская поправка к формуле (7.40), пропорционален и должен

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×