инженером связи.
Непонятными также были – и таковыми, собственно, и остались – отношения между кибернетикой в конкретном понимании (сюда относится теория систем, имеющих входы и выходы, с обратными связями, а также их всевозможными модификациями, с участками гомеостаза, самоорганизации) и т.п. ей и их относительно автономными областями, такими как теория информации Шеннона, а также еще менее связанными с кибернетикой и более независимыми направлениями – от теории динамического программирования до теории методов организации.
Главным упреком кибернетике с самого начала было утверждение, что она не открывает ничего нового и только переводит на собственный язык давно и хорошо известные, но представленные на других языках описания системы и процессы, тем самым обрекая себя на бесплодие; это не был полностью безосновательный аргумент. Плодотворность применения кибернетического понятийного аппарата во многих областях оказалась никакой. Она достаточно много проясняет – например, в теоретической биологии, – но сама по себе к новым значительным открытиям не ведет. Применение ее не то чтобы дает неправильные результаты, а только иногда применять ее преждевременно, иногда неэффективно, например, когда отсутствие в рассматриваемой науке соответствующих фактических данных делает невозможной подробную разработку предварительно введенных кибернетикой схем.
Потом обнаружилось, что теория информации несовершенна в своем постулированном на вырост универсализме применения; что понятие информации, даже асемантической, даже шенноновской чрезвычайно трудно применять адекватно вне системы отношений, установленных человеком в качестве системы соединений. Посвятим несколько слов этому очень важному аспекту. Правда, препятствия в развитии кибернетики не сводятся к информационным проблемам, но они необычайно важны, хотя бы потому, что трудно говорить конкретно об «управлении и связях в системе и в механизме», если не установлены конкретные понятия и параметры измерения информации, при помощи которых упомянутые связи и упомянутое управление можно было бы измерить.
Наибольшие восхищение и радость, как бы сопутствующие открытию современного философского камня, вызвало отождествление передающейся информации с термодинамической энтропией, поскольку таким образом был перекинут, как говорили «отцы», например фон Нейман, мост между логикой и физикой – впервые в истории познания. Информация оказалась «отрицательной энтропией», «негэнтропией», антитезой энтропии как физической величины, измеряющей «энергетическую диссипацию», «степень неупорядоченности» системы, понимаемой вероятностно (поскольку высшая гармония термодинамически всегда соответствует наименее вероятным состояниям физической системы). К сожалению, эта радость очень скоро принесла большое разочарование и озабоченность, поскольку, как оказалось, она была оптимизмом на вырост.
Поначалу считалось, что несовершенство физикалистского определения информации связано только с особенностями его семантики, с тем, что качество информации невозможно соотнести с теорией Шеннона. Не прекращались также попытки разработать и семантическую теорию информации в духе, например, Карнапа и Бар-Гиллеля. Однако оказалось, что даже чисто ортодоксальная, из области передачи, выведенная из термодинамики теория информации страдает определенным несовершенством. Это стало очевидным, когда многочисленные исследователи в разных областях попытались установить хотя бы приблизительное количество информации, заключенной в живом организме, в яйцеклетке, в системе хромосом или же в генетическом наборе биоценозной популяции – или же определить, где содержится больше информации: в зиготе или в организме, который из нее возникает? Один из самых выдающихся лингвистов, логиков и информатиков, Дж. Бар-Гиллель, в конце концов оповестил всех, что вообще не имеет смысла в науке задавать вопросы о форме того, чем является
Миной замедленного действия, расторопно установленной на этом участке исследования, было понятие сложности. И ведь создали целую теорию систем, однако по-прежнему пытаются конструировать только для того, чтобы в конце концов конкретизировать туманное и не поддающееся определениям, особенно математическим, независимое, «не желающее» подчиниться четкому обобщению понятие. Предостаточно также было попыток наведения мостов между понятиями физической информации сложности таким образом, чтобы измерения информации автоматически свидетельствовали об уровне сложности исследуемого объекта. Попыток было много, о чем свидетельствует возникновение терминов, определяющих информацию, – структурная, метрическая, топологическая, алгоритмическая, даже вневероятностная, комбинаторная и т.п. К сожалению, результаты принесли больше разочарования, чем успехов. Поясним коротко, доступно, а следовательно, не по нашей вине приблизительно, в чем состоит обреченность и ненадежность понятия информации по отношению к понятию сложности.
Понятие информации как бы обладает для многих субъективизмом, чуждым типичным терминам физики, поскольку измерения информации всегда относительны. Прибывающая информация – это акт выбора одного состояния из числа всех возможных состояний – и поэтому она измеряется разностью вероятностей: до поступления предпочтительного сигнала и после его поступления. Тем самым, поступление информации в измерительном смысле адекватно понижению неопределенности состояния, каким фактически характеризуется наблюдаемая система. Данная система в этом случае всегда рассматривается как один из