элементов замкнутого счетного множества, включающего все возможные состояния этой системы. Для лингвиста, например, нет ничего проще, чем определить границы множества, поскольку его элементы представлены языковой артикуляцией, всегда завершенной, а объем информации поддается точному комбинаторному определению – по количеству знаков (букв алфавита), которые можно обнаружить в сообщении. Простые операции комбинарики позволяют выполнить измерение, поскольку изображение букв, их размер, конструкция, то, что они, например, расположены горизонтально или вертикально, на плоскости или на поверхности геометрического тела, закодированы ли они на материальном носителе, как бумага, или передаются, например, как фонемы, колебаниями среды (воздуха) – не имеет никакого значения. Количество информации, содержащейся в напечатанной фразе, не изменится, если ее переписать палочкой на песке или вылепить буквы из глины, отлить из металла, высечь в скальном грунте или изготовить многотонные образцы из бетона и т.п. В то время как неизвестно, собственно говоря, каким образом можно аналогично ограничить информацию, то есть сделать ее независимой от носителя, – в случае с наследственным кодом. Совокупность фраз английского языка и совокупность «хромосомных высказываний» – как линейных артикуляций хромосомного «языка» – не поддается аналогичному подытоживанию в отношении информационной насыщенности, поскольку «отделимость» слов от эмиттента (источника информации) и рецептора (получателя) отличается самым решительным образом – ведь мы знаем, что представляет собой фрагмент из нескольких фраз на английском, но не знаем, чем, собственно, является «несколько хромосомных фраз». Мы можем обозначить отдельные единицы хромосомного кода – ДНК – буквами латинского алфавита. Мы всегда можем отличить нагромождение букв от фразы по-английски, однако мы не сможем отличить нагромождения «генных букв» от «фразы» на языке наследственности. Но то, что мы сейчас этого еще не умеем, не представляет непреодолимой трудности для информационного измерения. Ведь фразы на этнических языках – например, напечатанные – никогда не являются истинными системами в физическом смысле. Системность языковой фразы не является его физической характеристикой и даже составной частью подобной характеристики. Системность фразы возникает из ее подчиненности правилам синтаксиса, лексикографии и грамматики данного языка. Если же мы станем рассматривать напечатанную фразу как физическую систему и захотим измерить ее информацию, понимаемую термодинамически, то окажется, что та мера упорядоченности, какую привносит печать (вид фразы, напечатанной на бумаге) в целое энтропического баланса бумажного листа, ничтожна настолько, что практически равна нулю. С точки зрения термодинамики лист бумаги, покрытый пятнышками или подтеками типографской краски, и лист, заполненный осмысленным напечатанным текстом, почти идентичны информационно, то есть энтропически. Это потому, что одному биту информации соответствует десять – шестнадцать термодинамических единиц энтропии. Уровень упорядоченности физической системы, каковой является лист бумаги, практически не увеличивается посредством размещения на нем письма (напечатанного текста), поскольку на листе поместилось бы от силы несколько сотен битов, в то время как его энтропия в пересчете на биты является астрономической величиной (квинтиллионы или квадриллионы битов). Подобным образом выглядит термодинамический и одновременно информационный итог любой системы, созданной человеком, например, цифровая машина порядка ста миллионов элементов: машина может вместить самое большее 4 х 109 битов, или 4 х 107 термодинамических единиц, то есть опять-таки ничтожно мало. Ситуация меняется в случае с живыми системами, в виде зрелых организмов или же клеток, например, генеративных, поскольку количество упорядоченных элементов, составляющих подобную систему, насчитывает порядка 1012, и, таким образом, физическая энтропия клетки или системы обнаруживает зависимость от количества информации, содержащейся в этой системе и управляющей ее поведением (например, эмбриогенетическим процессом). Непреодолимые трудности появляются, однако, в ту же секунду, как только мы попробуем определить количество информации во «фразе», выступающей в виде хромосомной нити из-за того, что мы используем обычный статистический подход по отношению к «фразе», составленной из единиц ДНК (дезоксирибонуклеиновых единиц). Топологические особенности напечатанной фразы ни малейшего влияния не оказывают на ее информационную насыщенность, однако на информационное содержание хромосомной нити они влияют очень существенно. Поэтому нельзя отождествлять единицы ДНК, алфавита генного, с алфавитом буквенным. Следует четко осознавать, что та легкость процедуры, какая свойственна информационной трактовке языковых текстов, проистекает попросту из того, что мы опускаем вообще все связи, в какие фраза, воспринимаемая человеком, вступает с его мозгом; откуда-то нам известно, что фраза эта становится тогда системой команд (приказов) и одновременно субстратом сложной мозговой процедуры для принятия решений, подобно тому как хромосомная нить одновременно является и системой команд (приказов), сориентированных на протоплазму зиготы, а также – вместе с этой протоплазмой – субстратом сложной процедуры для осуществления процессов (а именно: развития плода). Таким образом, фразы естественного языка всегда выступают в виде кардинального исключения из всех операций их умственного восприятия, в то время как фразы языка наследственности аналогичной автономии не обнаруживают. Правда, мы считаем, что речь идет о трудностях, вызванных как бы технически, а не какими-то совершенно принципиальными различиями, но как раз эти-то технические трудности и сводят на нет применение простых методов статистики и теории вероятности в том ее элементарном виде, которого достаточно для создания информационных расчетов в языкознании. Попытки составления информационных расчетов, неоднократно предпринимаемые биологами при изучении клеток или организмов, приводят как к гигантскому разбросу количественных оценок, так и – что гораздо хуже – к принципиальным ошибкам и недоразумениям, поскольку в процессе подобных вычислений понятие информации попросту девальвируется, теряет всякий физический смысл, объяснимый происходящими процессами. Например, оказывается, что практически объем информации в живой и мертвой системах одинаков или почти одинаков, что количество информации в зиготе может быть меньшим, чем в организме, который из нее возникает, а это придает видимость истинности утверждению, что жизненные процессы протекали «против течения» вектора энтропии и тем самым не подчинялись законам термодинамики. Это, вне всякого сомнения, ложные выводы, которыми чреваты понятия, ложно – то есть вопреки физической реальности – сформулированные. Просто мы не можем так резко отгораживаться, исследуя с информационной точки зрения явления жизни, как при исследовании языковых фраз-одиночек. То, что можно опустить во втором случае, недопустимо в первом под угрозой впадения в абсурд. Когда Шеннон советовался с фон Нейманом, как назвать фундаментальную величину в его теории, последний предложил ему назвать ее энтропией не только для сохранения идентичности формулы (поскольку формулы информации и энтропии математически аналогичны), но и потому, что, как он язвительно заметил, никто, собственно, не знает, что такое энтропия. Когда через несколько лет Л. Бриллюэн писал книгу об информации в науке, то он назвал энтропию уровнем знания о физической системе, каким мы обладаем, – а не уровнем «неупорядоченности» этой системы вообще, что вызвало оживленные отклики и недоразумения, поскольку все решили, что Брюллюэн считает энтропию – и тем самым информацию – мерой чисто субъективной, определяющей, что мы знаем о предмете, а не то, что является частью свойственной ему характеристики состояния. Мы видим, что Джон фон Нейман действительно был прав. Понятие энтропии выводится из изучения различных состояний газа, особенно идеального, и из статистической механики; оно охватывает наши представления о системе в том смысле, что данная система – например, газ в сосуде – может находиться в одном из своих бесчисленных состояний, которые мы не способны различить, поскольку невозможно локализовать в один и тот же момент времени положение всех молекул газа. И тогда энтропия относится ко всем без исключения, не идентифицируемым в данный момент состояниям системы одновременно; поскольку они равновероятны, «с точки зрения энтропии» они являются как бы одним и тем же. Итак, это действительно субъективное знание, тесно сопряженное, однако, с объективным состоянием системы; когда же система переходит в состояния менее вероятные, все более высокого уровня координации, ее энтропия уменьшается, иными словами, совокупность равноправных по отношению друг к другу конфигураций газовых молекул утрачивает численную силу за счет измерения. Принципиально недостижимый энтропический ноль был бы состоянием, в котором о системе мы знаем все (в физическом, то есть локальном смысле, а не в каком-то там метафизическом понимании), поскольку в нем установилась целиком однозначная и, что еще более важно, единственно возможная в этот момент конфигурация частиц. (Этот ноль недостижим, поскольку неопределенность квантового происхождения неустранима в принципе.) Хромосомы являются системами с упорядоченностью очень высокого уровня – ведь в них каждая молекула должна находиться в определенном для нее месте; их энтропия очень мала, их информационное содержание – огромно, близкое, может быть, к максимальной вместимости макромолекулы полимерного
Вы читаете Диалоги
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату