клетки, рецептивные поля которых лежат в ее пределах, то она должна была бы, наоборот, восприниматься как неоднородная! Таким образом, если мы видим все занятое фигурой пространство как равномерно черное, белое, серое или зеленое, то клетки с рецептивными полями внутри границ фигуры не имеют к этому никакого отношения. С этой мыслью трудно смириться, не так ли? Однако с точки зрения инженера, конструирующего машину для кодирования формы, такой механизм, я думаю, был бы очень подходящим. Единственная информация, которую необходимо в этом случае получать, — это информация о внешнем контуре фигуры; анализ ее внутренности становится излишним. Нужно ли удивляться, что эволюция мозга пошла по пути, позволяющему перерабатывать информацию с помощью минимального количества клеток?
Услышав о свойствах простых и сложных клеток, люди часто делают вывод, что для полного анализа всех мельчайших элементов зрительного поля, включая темные и светлые линии и края различных участков во всех возможных ориентациях, требуется астрономическое число клеток. Разумеется, так оно и есть. Но все дело в том, что кора как раз и содержит астрономическое число клеток. Сегодня мы уже можем сказать, как работают клетки в данном участке мозга, по крайней мере как они отвечают на множество простых зрительных стимулов, встречающихся в повседневной жизни. Я подозреваю, что в стриарной коре нет двух клеток, которые работали бы совершенно одинаково. Действительно, всякий раз, когда с помощью микроэлектрода удавалось одновременно регистрировать активность двух клеток, оказывалось, что эти клетки хоть немного, но отличаются друг от друга — по положению рецептивных полей, дирекциональной чувствительности, интенсивности ответов или каким-то другим параметрам. Короче говоря, складывается впечатление, что в данном отделе мозга если и есть избыточность, то она невелика.
Можем ли мы быть уверены в том, что описанные клетки на самом деле предназначены именно для выявления отрезков прямых линий, а не каких-то других стимулов? Нельзя сказать, что мы и другие исследователи не пытались применять множество других стимулов, включая лица, карту мира и пассы руками. Как показывает опыт, было бы глупо думать, что мы исчерпали все возможности. В начале 1960-х годов, когда мы удовлетворились результатами, полученными с клетками стриарной коры, и решили перейти (и даже фактически уже перешли) к следующей области, нам случайно удалось записать реакцию одной слабо отвечавшей клетки стриарной коры. Однако, сделав светлую линию более короткой, мы убедились, что эта клетка способна давать весьма энергичную реакцию. Именно тогда мы наткнулись на класс клеток, отвечающих на концы линий. После этого мы еще почти двадцать лет работали с корковыми клетками обезьян, прежде чем обнаружили «пузырьки» — скопления клеток, специфически реагирующих на цвет (они описаны в главе 8). Сделав эти оговорки, я должен добавить, что некоторые из свойств, обнаруженных у клеток стриарной зоны, например ориентационная чувствительность, являются, несомненно, истинными свойствами этих клеток. В пользу этого можно привести много дополнительных данных, например данные по функциональной анатомии, описанные в главе 5.
До сих пор я почти не упоминал о существовании двух глаз. Очевидный интерес представляет вопрос: получает ли та или иная корковая клетка входные сигналы от обоих глаз, и если да, то одинаковы ли эти входы в количественном и качественном отношении?
Для того чтобы получить ответ, мы должны вернуться на некоторое время к наружному коленчатому телу (НКТ) и выяснить, имеют ли какие-то из его клеток входы от обоих глаз. НКТ — это самый низкий уровень, на котором уже возможно было бы объединение сигналов от двух глаз на одной клетке. Однако возможность эта, по-видимому, здесь не реализована — два разных пучка входных волокон распределяются по разным клеточным слоям, между которыми нет или почти нет взаимодействия. Как можно было бы ожидать, учитывая раздельность проекций от двух глаз, отдельная клетка НКТ должна отвечать на стимуляцию одного какого-то глаза и совсем не реагировать на стимуляцию другого. Судя по результатам некоторых экспериментов, стимулы, подаваемые на «чужой» для данной клетки НКТ глаз, могут оказывать слабое воздействие на реакцию, вызываемую со «своего» глаза. Однако практически можно считать, что каждая клетка находится под контролем только одного глаза.
Интуитивно ясно, что пути, идущие от каждого глаза, должны рано или поздно сойтись вместе, так как мы, глядя на что-либо, видим одну целостную картину. Тем не менее повседневный опыт говорит нам, что если закрыть один глаз, то большого изменения не произойдет — предметы будут казаться такими же четкими, такими же реальными и такими же яркими. Разумеется, общее поле зрения для двух глаз будет несколько шире, поскольку каждый глаз видит на своей стороне бо?льшую область пространства, чем другой глаз, хотя эта разница составляет всего лишь около 20–30°. Существенное отличие бинокулярного зрения от монокулярного состоит в ощущении глубины, о чем пойдет речь в главе 7.
В коре обезьяны те клетки, которые получают входные сигналы от НКТ и имеют рецептивные поля с круговой симметрией, сходны с клетками НКТ в том, что они тоже монокулярные. На этом корковом уровне мы находим примерно одинаковое число клеток, возбуждающихся от левого и от правого глаза, по крайней мере в тех участках коры, которые обслуживают область поля зрения в радиусе около 20° от центральной точки фиксации. Однако на следующем уровне коры выявляются уже бинокулярные клетки, простые и сложные, причем у макаков больше половины таких клеток могут реагировать независимо на сигналы от каждого из глаз.
Как только мы нашли бинокулярную клетку, можно тщательно сравнить ее рецептивные поля в обеих сетчатках. Сначала закрываем правый глаз животного и картируем рецептивное поле клетки в левом глазу, отмечая его точное положение на экране или на сетчатке, а также его сложность, ориентацию и расположение возбуждающих и тормозных зон; выясняем также, простая это клетка или сложная, исследуем ее способность реагировать на конец линии и дирекциональную чувствительность; после этого закрываем левый глаз животного, открываем правый и повторяем всю процедуру измерений сначала. Оказалось, что у большинства бинокулярных клеток все свойства, выявляемые в опытах с левым глазом, обнаруживаются и при стимуляции правого глаза — то же положение на сетчатке, та же дирекциональная чувствительность и т.д. Это позволяет заключить, что все связи, идущие к данной клетке от левого глаза, совпадают по структуре со связями, идущими от правого глаза.
Говоря о таком дублировании связей, нужно сделать одно уточнение. Если, определив для клетки оптимальный стимул, его положение, ориентацию, направление движения и т.д., мы сравним ее ответы при стимуляции одного глаза и при стимуляции другого, интенсивность реакции не всегда окажется одинаковой. Некоторые клетки действительно одинаково хорошо активируются от обоих глаз, однако другие явно дают более сильный разряд при стимуляции определенного глаза. В целом, за исключением той части корковых клеток, которые обслуживают периферию поля зрения, мы не находим никакого особого преимущества того или другого глаза — в каждом полушарии число клеток, лучше активируемых с противоположной стороны (от
Теперь можно оценить численность различных популяций клеток. Разобьем все изученные клетки, скажем 1000 штук, произвольно на семь классов по относительной эффективности воздействия на них того или другого глаза. Затем подсчитаем число клеток в каждом классе. На рис. 58 представлены соответствующие гистограммы для кошки и макака. Здесь сразу видны сходства и различия в распределении клеток у этих животных. Видно, что у обоих видов бинокулярные клетки встречаются достаточно часто, причем среди клеток с односторонним доминированием хорошо представлены оба глаза (у макака примерно поровну), что у кошек бинокулярных клеток очень много, что у макаков численность монокулярных и бинокулярных клеток примерно одинакова, причем у бинокулярных клеток зачастую сильно выражено доминирование одного глаза (группы 2 и 5), и что реже всего встречаются клетки, одинаково хорошо активируемые с любого глаза.
Рис. 58. Изучая распределение нейронов по глазодоминантности, мы исследовали сотни клеток и относили каждую из них к одной из семи произвольно выделенных групп. Клетки группы 1 определяются как