Глава 4
Геометрические задачи на проекционном чертеже
Умение правильно построить сечение по трем точкам упрощает решение некоторых геометрических задач.
Прежде чем приступать к решению задач этой главы, разберите несколько примеров на построение сечений и теней.
Пример 1. Построить сечение куба, проходящее через точки P, Q и R, расположенные так, как показано на рис. 4.1.
Точки P и Q (и точки Q и R) можно соединить сразу, так как они лежат в одной из граней куба.
Чтобы построить прямую, по которой плоскость сечения пересечет нижнее основание куба (эта прямая называется следом), нужно знать две точки, принадлежащие этой прямой. Одна точка нам дана — это точка R. Другую точку найдем, если продолжим до пересечения отрезки DC и PQ. Это можно сделать, так как указанные отрезки лежат в одной плоскости и, как видно из рис. 4.1, не параллельны. Полученная в результате точка S будет лежать в плоскости нижнего основания, так как вся прямая DC лежит в этой плоскости.
Через точки R и S мы теперь проведем след, который оставит плоскость сечения на плоскости нижнего основания. В результате получим точку T. После того как точки T и P соединены, сечение построено.
Несколько усложним задачу.
Пример 2. Построить сечение куба, проходящее через точки P, Q и R, расположенные так, как показано на рис. 4.2.
В этом случае одной вспомогательной точки окажется недостаточно. Хотя из рис. 4.2 видно, что сечение не пересечет плоскость нижнего основания, нужно построить след плоскости сечения на нижнем основании. Точку S мы построим так же, как в примере 1, а вторую точку T найдем, продолжив отрезки RQ и AD. След ST пересечет прямую BC в точке U. Так как точки U и P лежат в плоскости сечения, то, соединив их, найдем точку V, принадлежащую сечению куба, которая позволит завершить построение.
Пример 3. Построить сечение куба, проходящее через точку R, расположенную на передней грани куба, и точки P и Q — на ребрах задней его грани (рис. 4.3).
И на этот раз нам поможет построение следа плоскости сечения на плоскости нижнего основания. Чтобы было ясно, что точка R лежит на плоскости передней грани куба, спроецируем ее на основание. Проекция прямой PR и прямая PR пересекутся в точке S, принадлежащей следу. Вторую точку U следа мы получим, продолжив до пересечения BC и PQ. След US пересечет куб по отрезку VТ. Продолжим TR до пересечения с DD1 в точке G. Чтобы закончить построение, получим еще одну вспомогательную точку F так, как это было сделано в первом примере.
Построение теней осуществляется с помощью тех же самых приемов. При этом нужно в качестве вспомогательной точки использовать проекцию источника света на плоскость, на которую падает тень.
Построим, например, тень, отбрасываемую вертикальной спичкой AB на плоскость P (концом В спичка упирается в плоскость), если источник света расположен в точке Q, а точка Q1 есть проекция точки Q на плоскость P (рис. 4.4, а). Проведем две прямые AQ и BQ1, пересекающиеся в точке А1. Отрезок А1В и будет тенью спички AB.
Если спичка AB расположена между плоскостью P и источником света Q произвольным образом, то построение тени показано на рис. 4.4, б. Предполагается, что проекции точек А, В и Q (это точки С, D и Q1 соответственно) на плоскость P заданы или могут быть найдены. Вместо того чтобы строить тень спички AB, мы строим тени А1С и В1D двух вертикальных спичек AC и ВD, а затем, соединив точки А1 и В1, получаем нужную тень. Проекция спички AB на плоскость P фактически задана. Это отрезок CD. Тенью, отбрасываемой этой спичкой на плоскость P, если источник света расположен в точке Q, будет отрезок А1В1.
Пример 4. Источник света расположен над плоскостью нижнего основания куба в точке Q на высоте, вдвое превышающей ребро куба (рис. 4.5). Построить тень, отбрасываемую кубом на плоскость его нижнего основания.
Разумеется, можно было бы построить отдельно тени, отбрасываемые каждым вертикальным ребром куба, а затем соединить соответствующие вершины. Однако здесь проще воспользоваться тем, что ребра верхнего основания куба параллельны плоскости нижнего основания. Следовательно, тенью, отбрасываемой верхним основанием куба, будет квадрат.