l:href='#i_761.png'/> Получаем уравнение

Ответ. R = 5.

3.23. Проведем через точку O (рис. P.3.23) сечение B1EC1 пирамиды, перпендикулярное к стороне SA. Тогда угол B1EC1 равен ?, а OE = а. Так как пирамида правильная, то в силу симметрии треугольник B1EC1 равнобедренный, а B1C1 и BC параллельны.

Чтобы связать высоту SO с элементами треугольника B1EC1, рассмотрим треугольник SOA, для которого воспользуемся сравнением площадей:

SO · OA = OE · SA. (4)

Выразим все участвующие в этом соотношении отрезки через а, ? и h:

Подставив в уравнение (4) и возведя затем обе части уравнения в квадрат, получим уравнение

3h? tg? ?/2 ? h? = 3a? tg? ?/2,

откуда

Чтобы привести это выражение к виду, удобному для логарифмирования, преобразуем выражение, стоящее в знаменателе под радикалом:

Ответ.

3.24. Если в сечении образуется квадрат, то плоскость сечения пересекает все четыре грани пирамиды. Кроме того, отрезок KL параллелен MN, т. е. параллелен плоскости основания, а следовательно, и ребру AB.

Аналогично отрезки KM и LN параллельны ребру DC. Итак, если в сечении пирамиды — квадрат, то плоскость сечения должна быть параллельной двум скрещивающимся прямым, на которых лежат ребра AB и DC.

Докажем обратное: если провести сечение пирамиды, плоскость которого параллельна AB и DC, то в сечении получится прямоугольник. B самом деле, то, что это будет параллелограмм, устанавливается непосредственно. Спроецировав DC на плоскость основания (рис. P.3.24), мы убедимся в том, что MN и EC взаимно перпендикулярны. Отсюда следует, что прямым будет угол между DC и MN, а значит, и между LN и MN. Таким образом, KLMN — прямоугольник.

Мы доказали, что в сечении можно получить прямоугольник только с помощью плоскости, параллельной двум скрещивающимся ребрам.

Этот прямоугольник будет квадратом, если MN = MK. Из подобия треугольников ADC и AMK находим MK/CD = AM/AC, причем

Подставляя в первоначальное отношение, получим

Так как MK = MN, то получим уравнение относительно стороны квадрата, из которого

Ответ.

3.25. Расположим пирамиду так, как показано на рис. P.3.25.

Соединим вершину R1 куба с вершинами пирамиды. Пирамида АBCР разобьется на три пирамиды: R1ABP, R1ACP, R1BCP, y которых общая вершина R1 и одинаковая высота x, равная по длине ребру куба. Из сравнения объемов получим

1/6abc = 1/6 (xabxbc + xac),

откуда найдем x.

Ответ. abc/ab + bc + ac

3.26. Верхнее основание куба будет вписано в равносторонний треугольник A1B1C< sub>1 (рис. P.3.26) подобный основанию ABC пирамиды.

Выразим сторону A1C1 треугольника A1B1C< sub>1 через сторону вписанного квадрата:

A1C1 = 2A1E1 + a = 2a ctg 60° + a = a(1 + 2/v3).

Площадь треугольника A1B1C< sub>1 тогда равна  Так как треугольники ABC и A1B1C< sub>1 подобны и расстояние первого от центра подобия равно h, а расстояние второго равно h ? а, то отношение площадей равно h?/(h ? a)?. Поэтому площадь треугольника ABC равна

Ответ.

3.27. Пусть трехгранный угол пересечен некоторой плоскостью и в сечении образовался треугольник со сторонами a, b и с (рис. P.3.27).

Обозначим через x, y и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату