A.
4. Найдите сумму действительных корней уравнения
x? + 2(с? + 2с) x + 4с? ? 2с? + 40 = 0
и укажите, при каких с ? R эта сумма принимает наибольшее значение.
5. Основанием треугольной пирамиды SABC служит треугольник АВС, y которого ВС = 1, СА = 13, а высота СЕ = v105. Каждое боковое ребро пирамиды образует с плоскостью АВС угол величиной ?. Определите площадь основания и объем пирамиды.
Московский государственный институт электроники и математики (технический университет) (МИЭМ)
1. Решите уравнение
2. Решите уравнение
|6 cos x ? 1| = 4 cos 2x + 3.
3. Решите неравенство
log2 (3x ? 5) + log? (2x ? 1) < 1.
4. В правильную четырехугольную пирамиду вписана сфера, которая касается основания и всех боковых граней. Сфера делит высоту пирамиды в отношении 1 : 3, считая от вершины. Найдите объем пирамиды, если апофема пирамиды равна а.
5. При а = 1 решите уравнение
(4a + 2) sin x + 2a cos 2x + а + 1 = 0
и определите все значения а, при которых это уравнение имеет ровно одно решение, принадлежащее отрезку [0; 5?/6].
Московский государственный технический университет им. Н. Э. Баумана (МГТУ)
1. Из пункта А в пункт В одновременно вышли два пешехода. Когда первый прошел половину пути, второму осталось пройти 24 км, а когда второй прошел половину пути, первому осталось пройти 15 км. Найдите расстояние от пункта А до пункта В.
2. Найдите все корни уравнения
cos 2x + cos 6x = cos 4x,
принадлежащие промежутку [?/2; ?].
3. Решите уравнение
4. Решите неравенство 2x + 1 + 3 < 21 ? x.
5. Какая наибольшая площадь может быть y прямоугольного треугольника, одна вершина которого совпадает с точкой M(5; 0), другая лежит на графике функции y = x?(5 ? x), 0 ? x ? 5, а вершина прямого угла — на оси Ox?
6. Найдите все значения p, при которых система уравнений
имеет единственное решение.
7. Основанием пирамиды ТАВС служит треугольник АВС с углом А, равным 60°. Боковое ребро ТА совпадает с высотой пирамиды и равно h; ребро ТС перпендикулярно стороне основания ВС, а угол между ребром ТВ и биссектрисой основания АD равен 60°. Какую наименьшую площадь может иметь сечение пирамиды плоскостью, проходящей через биссектрису АD и пересекающую ребро ТВ?
Московский государственный университет
им. M. В. Ломоносова (МГУ) (экономический факультет)
1. Решите уравнение
3|x| = 5x? + 3x.
2. Решите систему неравенств
3. В треугольнике АВС со стороной AB = v5 из вершины В к стороне AC проведены медиана ВМ = 2v2 и высота ВН = 2. Найдите сторону ВС, если известно, что ?АВС + ?ACВ < 90°.
4. Банк планирует вложить на один год 40% имеющихся y него средств клиентов в проект X, а остальные 60% — в проект Y. В зависимости от обстоятельств проект X может принести прибыль в размере от 19 до 24% годовых, а проект Y — от 29 до 34% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке. Определите наименьший и наибольший возможный уровень процентной ставки по вкладам, при которых чистая прибыль банка составит не менее 10% и не более 15% годовых от суммарных вложений в проекты X и Y.
5. Функция f(x) определена на всей числовой прямой, является нечетной, периодической с периодом 4, и на промежутке 0 ? x ? 2 ее значения вычисляются по правилу f (x) = 1 ? |x ? 1|. Решите уравнение
2 f(x) f (x ? 8) + 5 f(x + 12) + 2 = 0.
6. Найдите все значения параметра а, при которых периметр фигуры, заданной на координатной плоскости условием
будет наименьшим.