промежуток времени. Это означает, что речь идет о работе «вообще», о том, что каждый выполнял какую- то часть этой работы, а потому всю работу следует принять за единицу. Ту же мысль подтверждает и условие, в силу которого третий рабочий приступил к работе, когда 1/6 работы (обратите внимание: 1/6 всей работы, а не 45 или 27 деталей) была уже выполнена.
Из условия следует, что рабочие работают по-разному, другими словами, они изготовляют разное число деталей за одно и то же время. Поэтому нужно ввести в рассмотрение производительность каждого из них. Однако через
После всего сказанного должно быть очевидным, что мы легко перепишем условие задачи в виде системы уравнений, если введем в рассмотрение еще три неизвестные:
Мы получили три уравнения (их можно было написать в виде
которое должно отражать то обстоятельство, что в итоге вся работа была выполнена. Однако это уравнение не содержит никакой самостоятельной информации: оно является следствием первых трех и получается в результате их сложения. Поэтому последнее уравнение, хотя и верно составлено, но бесполезно для решения задачи.
Так как первый и второй рабочие вместе выполняют всю работу за 1/
1/
Составим теперь уравнение, отражающее тот факт, что третий рабочий приступил к работе, когда ее 1/6 была выполнена. Другими словами, когда первый проработал
Добавляя к этим пяти уравнениям шестое:
мы можем приступить к решению полученной системы уравнений.
Решая систему уравнений, как правило, следует держать в поле зрения два обстоятельства. Во- первых, систему уравнений нужно воспринимать в целом, так, как вы воспринимали бы ее, решая вне связи с задачей. Это позволит найти более рациональный ключ к ее решению. Во-вторых, нельзя упустить из виду те неизвестные (или комбинации неизвестных), которые позволят ответить на вопрос задачи. Благодаря этому можно обойтись без излишних вычислений.
В нашем примере второе обстоятельство должно побудить нас использовать уравнение (4) для упрощения уравнения (3), в результате чего из (3) будет исключено неизвестное
С его помощью можно выразить
2
откуда
Дальнейшее решение системы не представляет труда. Находим последовательно:
Эту же задачу можно было бы решить с помощью меньшего числа неизвестных, если ввести в рассмотрение, помимо величин
(за время
(за время
1/
(первый и второй рабочие выполняют всю работу на 9 ч быстрее, чем третий, работая один).
Поскольку
Вместе с
Как и прежде, найдем последовательно