промежуток времени. Это означает, что речь идет о работе «вообще», о том, что каждый выполнял какую- то часть этой работы, а потому всю работу следует принять за единицу. Ту же мысль подтверждает и условие, в силу которого третий рабочий приступил к работе, когда 1/6 работы (обратите внимание: 1/6 всей работы, а не 45 или 27 деталей) была уже выполнена.

Из условия следует, что рабочие работают по-разному, другими словами, они изготовляют разное число деталей за одно и то же время. Поэтому нужно ввести в рассмотрение производительность каждого из них. Однако через x, у и z мы обозначим не число деталей, изготовляемых в час первым, вторым и третьим рабочими соответственно, а ту часть всей работы, которую каждый из них выполняет за это время.

После всего сказанного должно быть очевидным, что мы легко перепишем условие задачи в виде системы уравнений, если введем в рассмотрение еще три неизвестные: t1, t2, t3 — время, затраченное соответственно первым, вторым и третьим рабочими. Так как каждый из них сделал за это время треть всей работы, то

t1x = t2у = t3z = ?. (1)

Мы получили три уравнения (их можно было написать в виде t1x = ?, t2у = ?, t3z = ?. K ним нередко добавляют четвертое:

t1x + t2у + t2z = 1,

которое должно отражать то обстоятельство, что в итоге вся работа была выполнена. Однако это уравнение не содержит никакой самостоятельной информации: оно является следствием первых трех и получается в результате их сложения. Поэтому последнее уравнение, хотя и верно составлено, но бесполезно для решения задачи.

Так как первый и второй рабочие вместе выполняют всю работу за 1/x + y ч, а третьему на это потребуется 1/z ч, то еще одно условие задачи можно записать так:

1/x + y  + 9 = 1/z.     (2)

Составим теперь уравнение, отражающее тот факт, что третий рабочий приступил к работе, когда ее 1/6 была выполнена. Другими словами, когда первый проработал t1 ? t3 ч, а второй t2 ? t3 ч, они сделали 1/6 всей работы:

x(t1 ? t3) + у (t2 ? t3) = 1/6.    (3)

Добавляя к этим пяти уравнениям шестое:

t2 ? t3 = 2,      (4)

мы можем приступить к решению полученной системы уравнений.

Решая систему уравнений, как правило, следует держать в поле зрения два обстоятельства. Во- первых, систему уравнений нужно воспринимать в целом, так, как вы воспринимали бы ее, решая вне связи с задачей. Это позволит найти более рациональный ключ к ее решению. Во-вторых, нельзя упустить из виду те неизвестные (или комбинации неизвестных), которые позволят ответить на вопрос задачи. Благодаря этому можно обойтись без излишних вычислений.

В нашем примере второе обстоятельство должно побудить нас использовать уравнение (4) для упрощения уравнения (3), в результате чего из (3) будет исключено неизвестное t2, которое нас не интересует. Однако после замены t2 ? t3 на 2 уравнение (3) потеряет симметрию относительно t1x и t2у, что затруднит использование уравнений (1). Если же в уравнении (3) раскрыть скобки и вспомнить, что xt1 = ? и уt2 = ?, то получим уравнение

t3(x + у) = ?.

С его помощью можно выразить x + у через t3, а из уравнения zt3 = ? можно выразить через t3 и неизвестное z. Подставляя эти выражения в (2), получим

2t3 + 9 = 3t3,

откуда

t3 = 9.

Дальнейшее решение системы не представляет труда. Находим последовательно: t2 = 11, z = 1/27, у = 1/33. Из уравнения (2) определяем x = 5/198 и t1 = 1/3x = 66/5. Итак, первый рабочий работал 13 ч 12 мин.

Эту же задачу можно было бы решить с помощью меньшего числа неизвестных, если ввести в рассмотрение, помимо величин x, у и z, имеющих прежний смысл, величину t, обозначающую время, в течение которого рабочие работали вместе, т. е. время работы третьего рабочего. Это привело бы нас к системе:

t(x + у + z) = 5/6     (1?)

(за время t рабочие сделали вместе 5/6  всей работы),

tz = (t + 2)у = ?     (2?)

(за время t третий рабочий сделал треть всей работы, а второму на это потребовалось на 2 ч больше),

1/x + y + 9 = 1/z     (3?)

(первый и второй рабочие выполняют всю работу на 9 ч быстрее, чем третий, работая один).

Поскольку tz = ?, то из (1?) найдем 

x + y = 1/2t

Вместе с z = 1/3t подставим в (3?). Получим

t = 9.

Как и прежде, найдем последовательно z, у и x. На вопрос задачи можно ответить, вспомнив, что первый рабочий работал столько, чтобы успеть сделать ?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату