«Курс анализа» (фр.) (Примеч. перев.)
Имеется в виду известный всякому английскому школьнику восторженный сонет поэта-романтика Джона Китса (1795-1821), написанный сразу по прочтении «Одиссеи» в далеком от оригинала, но весьма экспрессивном «ренессансном» переводе Джорджа Чапмена (1559?_1634). Сонет заканчивается строками в переводе С. Сухарева:
Вот так Кортес, догадкой потрясен, Вперял в безмерность океана взор, Когда, преодолев Дарьенский склон, Необозримый встретил он простор. (Примеч. перев.)
Дон — преподаватель, член совета колледжа в Кембридже и Оксфорде. (Примеч. перев.)
Сриниваса Рамануджан (1887-1920) — индийский математический гений- самоучка. Он написал письма трем кембриджским математикам с просьбой высказать мнение о его результатах; вник и откликнулся один лишь Харди. Среди многого другого на Харди произвела впечатление следующая найденная Рамануджаном сумма ряда:
1 ? 5(1/2)3 + 9(1?3/2?4) 3 ? 13(1?3?5/2?4?6)3 + … = 2/?. (Примеч. перев.)
«Овал» — легендарное поле для игры в крикет в лондонском Кеннингтоне. Игрок выбит, если мяч попал в калитку, когда хотя бы один из бегущих игроков находился между калитками (игрок тогда считается «bowled out») или если игрок подающей команды поймал мяч после того, как игрок бьющей команды коснулся мяча битой, но до удара мяча о землю (игрок считается «cought out»). Иннинг заканчивается, когда выбиты 10 игроков бьющей команды. (Цифра в 211 пробежек колоссально велика при любой схеме подсчета числа пробежек без выбывания). Тест-матч играется по правилам, делающим встречу самым долгим соревнованием в крикете. На два иннинга обычно отводится 5 дней. (Примеч. перев.)
Так всегда говорится. Правда, Александерсон в книге о Джордже Пойа утверждает, что дома у Пойа их много больше.
Хотя на корешке моего экземпляра (первого издания) написано просто Primzahlen.
«О нулях функции Римана ?(s)». Упоминаемая чуть ниже статья Литлвуда: «О распределении простых чисел». (Примеч. перев.)
Разумеется, предпочтительнее знать точный ответ; но речь идет о том, что часто удается доказать лишь менее строгое ограничение. (Примеч. перев.)
В задачах такого типа имеются еще и нижние границы. Нижняя граница — это такое число N, для которого можно доказать, что, каков бы ни был точный ответ, он заведомо больше, чем N. В случае с литлвудовым нарушением, похоже, сделано куда меньше — можно думать, из-за того, что все знают, что точное значение числа, при котором происходит первое нарушение, необычайно велико. Делеглиз и Риват в 1996 г. установили в качестве нижней границы 1018, а позднее довели нижнюю границу до 1020, однако ввиду результата Бейса