бесконечно развивающийся и совершенствующийся, проходящий ряд фаз или стадий, связанных с переходами от неуверенных действий новичка до виртуозного исполнения мастера. Задача физиологии спорта состоит в том, чтобы разобраться во всей сложности этого процесса, распознать его законы и вооружить их знанием педагога и тренера. Глава III РАБОТА МЫШЦ Физиологическая наука уделяла очень много внимания мышечной системе с целью разгадать законы движения тела. Мышца может в необычайной степени и подчас с чрезвычайной скоростью изменять свои размеры, свою форму, длину, свои физические свойства: упругость, силу и т. п. Другой такой ткани не существует, равно как не существует пока и физического прибора, который мог бы повторять свойства и качества мышцы. Изучением работы мышц заняты представители различных отраслей физиологии. Одних интересует мышечное сокращение как проявление возбуждения, других оно привлекает для решения вопросов трансформации химической энергии в механическую, третьих интересует вопрос об изменчивости упругих свойств тканей, четвертые увлечены процессами утомления и упражнения в том виде, в каком они проявляются в работе мышц. Задачей этой главы не является всестороннее изложение физиологии мышц. Мы коснемся лишь тех сторон работы мышц, которые, как нам кажется, особенно могут интересовать широкие круги читателей, так или иначе связанных со спортом. Электрические явления Мышечное сокращение возникает под влиянием нервного импульса, поступающего к мышце по двигательному нерву из центральной нервной системы. Нервный импульс, или, иначе, волна возбуждения, с большой скоростью (до 100 м в секунду) промчавшись по нервам, переходит на мышцу и распространяется по ней уже с меньшей скоростью (около 10 м в секунду), Волна возбуждения является очень сложным, еще до конца не распознанным электрохимическим процессом, свойственным нервной и мышечной тканям. О ней можно судить, регистрируя изменения электрического потенциала мышцы. Установлено, что возбужденный участок мышцы является электроотрицательным по отношению к невозбужденному. Если соединить два участка мышцы проводником, то в тот момент, когда волна возбуждения достигает одного из них, в проводнике возникает электрический ток. Так как электрический потенциал возбужденного участка ничтожно мал - тысячные или даже миллионные доли вольта,-то для его обнаружения используются мощные усилители. Усиленный ток подается на высокочувствительные гальванометры-осциллографы, которые и записывают возникающие в мышце при прохождении по ней волны возбуждения электрические явления. Одним из самых интересных явлений, обнаруженных при исследовании электрических процессов в мышцах человека, оказалась прерывистость возбуждения и множественность нервных импульсов. Каким бы коротким ни было сокращение мышц в естественных условиях, оно никогда не является следствием лишь одной волны возбуждения, одиночного нервного импульса. Импульсы идут всегда чередою, волна идет за волной с большой частотой, обычно не реже 50 волн в секунду. Внешне напряженная мышца кажется иногда совершенно неподвижной, охваченной одним сплошным, непрерывным возбуждением. На самом же деле осциллограф показывает в это время колеблющийся прерывистый процесс, частую смену волн возбуждения. При наложении электродов на какой-нибудь участок тела с целью отведения мышечных токов захватывается некоторая область поверхностно лежащих мышц. Естественно, что при этом осциллограф записывает электрические потенциалы, возникающие в группе мышечных волокон. Анализируя характер электрических осцилляций, их амплитуду и частоту, можно получить представление о возбуждении мышцы, координации деятельности ее волокон, степени синхронности их возбуждения. Регистрация биопотенциалов позволяет увидеть, 'как концентрируются нервные импульсы в результате упражнения (Киселев, Маршак, Косилов, Виноградов) и как они становятся более иррадиированными при утомлении. Наиболее показательным является подсчет (по данным осциллограммы) суммарной биоэлектрической активности данной группы мышечных волокон в единицу времени. Эта активность стоит в довольно четкой связи со степенью мышечного напряжения (В. С. Гурфинкель). Электрофизиология мышцы (электромиография) способна продемонстрировать протекание процесса возбуждения в мышце. Но она не раскрывает еще, каким путем возбуждение превращается в работу, в мышечное сокращение. В раскрытии закономерностей трансформации энергии в мышце, приводящих к образованию механической энергии, основная заслуга принадлежит биохимии мышц. Химизм работы мышц Живое вещество мышцы - мышечный белок - под влиянием поступившей в мышечное волокно волны возбуждения подвергается очень быстрым обратимым изменениям. Содержащиеся в мышце энергетические вещества освобождают заключенную в них химическую энергию, которая трансформируется в механическую энергию, т. е. в работу мышц. При этом совершается целый ряд сложных химических реакций, связанных с поглощением и освобождением энергии, причем большая скорость этих реакций обеспечивается целой системой ферментов. Основным энергетическим веществом мышцы признается соединение, именуемое аденозинтрифосфорной кислотой, или, сокращенно, АТФ. Это соединение способно чрезвычайно легко и быстро распадаться, освобождая при этом заключенную в нем потенциальную энергию, которая используется в работе мышц. Толчком к распаду АТФ служит поступившая в мышечное волокно волна возбуждения. Мышечный белок, воспринявший этот процесс возбуждения, становится активным ферментом, и под его воздействием начинается бурный распад АТФ. Энергия, освободившаяся при распаде АТФ, передается на сократительные элементы мышечных волокон - миофибриллы. Белок миофибрилл обладает своеобразным расположением молекул. Обычно молекулы других белков имеют шарообразную форму. Такие белки, свертываясь, выпадают в осадок в виде хлопьев. Таким является, например, молочный белок, яичный белок и т. п. Белок же миофибрилл состоит из молекул палочковидной формы. Эти молекулы могут располагаться одна за другой, так сказать гуськом, благодаря чему получается нитевидное, или, иначе, фибриллярное, строение. Под влиянием энергии, освободившейся при распаде АТФ, белковые нити разного строения начинают перемещаться, скользить одна относительно другой. От этого сократительный элемент мышцы становится короче. Укорачиваясь, мышцы совершают работу, сообщая движение частям тела. АТФ, доставившая свою энергию мышечному сокращению, представляет собою очень ценное энергетическое вещество. Это вещество имеет белковое происхождение, т. е. является очень важным для организма соединением. Легко представить себе, что в результате непрерывного распада при каждом мышечном сокращении количество этого белкового вещества очень быстро истощилось бы. На самом же деле такого истощения не происходит, потому что АТФ немедленно после своего распада вновь восстанавливается. В настоящее время изучены очень подробно многочисленные химические реакции, на которых основан процесс обратного синтеза АТФ. Останавливаться на этих реакциях здесь не будем, укажем лишь на ту важную роль, которую в этом процессе играют углеводы, содержащиеся в мышцах. Дело в том, что вслед за распадом АТФ немедленно начинают распадаться и углеводы. Химические процессы, которыми сопровождается распад углеводов, являются важными участниками синтеза АТФ. Последняя воссоздается почти полностью, но при этом теряется какая-то часть углеводов. Вместо них в мышце оказываются продукты их распада, среди которых первое место занимает молочная кислота. Примечательно, что все эти химические превращения происходят без участия кислорода. Действительно, процессы окисления не являются необходимыми для мышечного сокращения. Свою энергию, трансформируемую в механическую работу, мышца получает главным образом не в результате окисления, а в результате без-кислородного, или, как принято говорить, анаэробного, распада энергетических веществ. Однако это не означает, что кислород вообще не нужен мышце и что эффективность мышечной работы нисколько не страдает от того, имеется ли в наличии кислород, происходят ли процессы окисления или кислород отсутствует. Если измерить количество работы, которую может выполнить мышца в отсутствии кислорода, и сравнить с количеством работы, которую выполняет мышца в присутствии кислорода, то окажется, что во втором случае работы выполняется намного больше, чем в первом. Значит, кислород каким-то образом обеспечивает рабочую функцию мышцы. Значение кислорода, роль процессов окисления станет ясным из следующего. Как мы видели, в результате анаэробных процессов, обеспечивших мышечное сокращение и ресинтез АТФ, осталась молочная кислота. Она подвергается окислению, в результате которого образуется углекислый газ и вода. Окисляется, однако, не вся молочная кислота, а только часть ее. Предположим, что молочная кислота явилась результатом анаэробного распада 4 молекул углевода. При этом получается 8 молекул молочной кислоты. Из этих 8 молекул окислению подвергаются обычно не больше двух. Освободившаяся при этом энергия используется на то, чтобы оставшиеся 6 молекул молочной кислоты вновь превратились в 3 молекулы углевода. Получился весьма экономный процесс. Количество распавшегося углевода составляло 4 молекулы, но так как 3 молекулы благодаря окислению вновь были синтезированы, то фактические потери углевода составили всего 1 молекулу. Соотношение между количеством окисленного вещества и ресинтезированного
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату