этом не меняется. Практически это почти не встречается. Поэтому под изотоническими условиями просто понимают условия, обеспечивающие движение мышцы при малом сопротивлении. В силу сказанного определение максимальной силы мышцы проще всего производить в изометрических условиях. В этих условиях проявляет себя в максимальной степени одно из двух свойств мышц. Мышца, как известно, обладает свойствами сокращения и напряжения. Сокращение возможно лишь в изотонических условиях. Если же созданы условия изометрические, исключающие сокращение мышцы, то в полной мере проявляются ее свойства развивать напряжение. В итоге мы приходим к заключению, что основным измерителем силы как двигательного качества должна быть максимальная величина развиваемого мышцами напряжения. Сила предстает тогда перед нами в своем статическом выражении. Измеряется сила в статике, а не в движении. Для измерения должны здесь служить упругие динамометры или предельные веса удерживаемых грузов. Только в этом случае мы можем получить наиболее чистое выражение силы, проявляющееся в величинах мышечного напряжения. В практике такие случаи встречаются крайне редко. При подъеме тяжестей условия не строго изометричны. Здесь имеет место сокращение мышц, поэтому напряжение их не максимально. Ближе всего к максимуму напряжение мышц при жиме. При толчке или рывке напряжение меньше, поскольку здесь значительна скорость сокращения. В борьбе встречаются случаи максимального напряжения, когда противодействие противника настолько велико, что прилагаемая борцом максимальная сила не в состоянии сдвинуть его с места. Если же борцовский прием проведен с большой скоростью, то это значит, что мышечное напряжение было здесь не предельным. Близким к максимуму оказывается мышечное напряжение борца, когда его преодолевающие или уступающие усилия проявляются в сравнительно медленном движении. В гимнастике максимальные напряжения встречаются при тех гимнастических позах, которые достигаются за счет максимального усилия, но могут сохраняться лишь очень короткое время. Чем больше время статического усилия, тем относительно меньше величина развиваемого напряжения. Близки к максимальным напряжениям и те гимнастические движения, которые, несмотря на максимум развиваемого усилия, совершаются медленно. Определив, что специфическим измерителем силовых качеств являются показатели максимального мышечного напряжения, естественно задаться вопросом о физиологических механизмах, от которых, в основном, зависит величина мышечного напряжения. Еще в прошлом веке Вебером было установлено, что напряжение мышц зависит от величины мышечного поперечника, от толщины мышц. Чем толще мышца, тем при прочих равных условиях большее напряжение она может развить (рис. 41). Это «правило Вебера» оказа- лось довольно точным, и ему «подчиняются» как длинные, так и короткие мышцы. Отсюда следует, что напряжение мышцы не зависит от ее длины. Оно связано с толщиной мышцы. Если сравнивать мышцы различного строения, то обнаружится, что строение мышцы также влияет на напряжение. Мышцы с перистым расположением волокон оказались более сильными, чем мышцы с параллельным ходом волокон, несмотря на одинаковую их толщину. Это вызвано тем обстоятельством, что при одинаковой толщине у перистых мышц больше волокон, чем у мышц с параллельным ходом волокон. Но все же чем толще перистая мышца или чем толще веретенообразная или иная мышца, тем она сильнее. Для мышц человека правило Вебера, естественно, не могло быть проверено с такой точностью, с какой оно установлено на изолированных мышцах. У человека величина мышечного напряжения, если и не строго пропорциональна, то все же зависит от толщины мышц. Обычно у спортсменов с толщиной мышц связана величина общей массы тела. Этим объясняется, почему с увеличением веса тела происходит относительное уве- личение мышечной силы. В частности, и сила тяжелоатлета зависит при равных условиях от массы его мышц. На этом основании производится деление на весовые категории. Если сравнить силу участника соревнования по поднятию тяжестей, весящего 50 кг, с силой спортсмена, весящего 100 кг, то преимущество окажется за спортсменом более тяжелого веса. Ясно, что у тяжелоатлета сечение мышц, участвующих в подъеме штанги, больше, чем у легковеса. Правда, строгой пропорциональности между массой тяжелоатлета и силой его мышц быть не может. Все же зависимость силы от мышечной массы выражена здесь достаточно хорошо (А. В. Коробков). Аспирантка И. Н. Книпст сопоставила два показателя: вес штанги и вес штангиста. Для этого она использовала материалы крупных соревнований тяжелоатлетов и вывела средние величины для групп спортсменов. Обнаруженную зависимость она выразила графически. На рис. 42 показаны эти графики. По абсциссе отложены здесь средние веса спортсменов, а по ординате - средние данные их рекордов. Мы видим, что линия, показывающая зависимость веса поднимаемой штанги от веса штангиста, при подъеме штанги жимом близко приближается к прямой. Это значит, что зависимость силы штангиста от его массы является прямой зависимостью, или, точнее говоря, линейной зависимостью. Менее четкой оказалась связь между весом штанги и весом штангиста при подъемах штанги толчком и рывком. Здесь увеличение веса штанги все уменьшается по мере увеличения веса спортсмена. Эти кривые не имеют линейного характера подобно тому, что мы видели при подъеме жимом. Это происходит потому, что при подъеме толчком или рывком приобретает большее значение, чем при подъеме жимом, ускорение, т. е. скорость мышечного сокращения, а эта величина не так тесно связана с массой мышц. Помимо мышечной массы, т. е. чисто периферического фактора, величина мышечного напряжения, т. е. сила мышцы, зависит также от характера нервных воздействий на мышцу. Физиологией установлено, что мышцы не всегда напрягаются целиком. Каждая мышца состоит из большого количества мышечных волокон. К ним подходит множество нервных волокон, каждое нервное волокно представляет собою отросток двигательной нервной клетки, находящейся в спинном мозге. Подойдя к мышце, нервное волокно разветвляется, и каждая веточка вступает в отдельное мышечное волокно. Благодаря этому каждая двигательная нервная клетка управляет несколькими (иногда десятками) мышечными волокнами. Вся система, состоящая из нервной клетки, нервного волокна, его веточек и связанных с ними мышечными волокнами, носит название двигательной, или моторной, единицы. Ясно, что количество мышечных волокон, приходящих в возбуждение и в условиях изометрического режима напрягающихся, будет зависеть от того, в скольких двигательных нервных клетках возникло одновременно возбуждение и насколько это возбуждение велико, чтобы охватить все элементы каждой двигательной единицы. Если в возбуждение действительно пришли одновремен-но все двигательные нервные клетки и если величина возбуждения была при этом достаточно большой, то и напряжение охватит все двигательные единицы, всю мышцу. Ее напряжение будет максимальным, ее сила проявится в полной мере. В обычных условиях, когда человек не производит систематических максимальных усилий, его мышцы не развивают максимальных напряжений, не реализуют всю свою силу. Обычно в возбуждение вовлекается лишь какая-то часть двигательных нервных клеточек, и напряжение охватывает лишь часть двигательных единиц. Кроме того, в обычных условиях различные двигательные единицы вступают в действие не одновременно, а в различных сочетаниях, в различной последовательности, сменяя друг друга подчас в самых причудливых соотношениях. Иначе говоря, редко бывает достаточная синхронизация в деятельности различных двигательных единиц. Процесс тренировки силы в первую очередь, как справедливо замечает Н. В. Зимкин, сводится к налаживанию координаций между возбуждениями различных двигательных нервных центров. Лишь в результате тренировки двигательные единицы, действующие вразброд, начинают действовать более согласованно, более синхронно. Вследствие тренировки оказывается возможным вовлечь в возбуждение сразу всю или почти всю массу двигательных единиц. Именно по этой причине мы замечаем в начале тренировки возрастание мышечной силы без увеличения мышечного поперечника. Последнее, т. е. разрастание самой мышечной массы, начинает сказываться уже значительно позднее. Быстрота Существуют два слова, выражающие одно и то же понятие и используемые для определения одного и того же двигательного качества: быстрота и скорость. Одно из них, а именно скорость, имеет строго определенное значение в механике. Скорость измеряется отношением пути ко времени. В этом смысле измеритель скорости не всегда пригоден для измерения данного двигательного качества. Не трудно убедиться, например, что в скорости бега имеет значение и частота шагов и длина шагов. Последняя может зависеть от длины ног и от их толчковой силы. Неудивительно, что у спринтеров мышцы ног обладают незаурядной силой. Кроме того, средняя скорость бега на короткие дистанции зависит от способности бегуна удерживать достигнутый максимум скорости до конца дистанции, не снижая ее, а это уже является показателем выносливости. В итоге, все сказанное не позволяет использовать одно измерение скорости бега и других передвижений для характеристики двигательного качества, чтобы не спутать со скоростью передвижения. Более целесообразно для характеристики данного качества пользоваться словом «быстрота». В настоящее время для характеристики быстроты как двигательного качества используются три измерителя: время двигательной реакции, время отдельного движения и число движений в единицу
Вы читаете ФИЗИОЛОГИЯ СПОРТА