одном звене, мы тем самым можем получить представление о способности производить движения с максимальной частотой и другими звеньями тела. Для характеристики максимальной частоты движений нужно регистрировать число движений за короткие отрезки времени. Очень точные измерения частоты движений путем регистрации времени каждого движения, проведенные И. М. Фрейдбергом, показывают замедление движений часто уже после 1-2 секунд работы. Если же, как это часто делается, подсчитывать число движений сразу за 10 и даже за 20 сек., то такое число характеризует не столько качество быстроты, сколько выносливость в совершении частых движений. Естественно стремление выяснить, какие физиологические механизмы лежат в основе максимальной частоты движений. В литературе довольно распространен взгляд, согласно которому качество быстроты, и в частности способность производить максимальную частоту движений, зависит от лабильности производящих это движение мышц. Напомним, что под лабильностью принято понимать максимальное число возбуждений в секунду, которое способна воспроизводить мышца. Д. П. Букреева провела исследования, чтобы выяснить, обладают ли лица, способные давать высокую частоту движений, соответственно высокими показателями лабильности. Результаты опытов оказались отрицательными. У лиц, дававших очень высокую частоту движений, лабильность мышц, совершавших это движение, была не выше, чем у тех, кто мог совершать движение лишь с малой частотой. Испытуемые были подвергнуты специальной тренировке, отчего максимальная частота движений у них значительно возросла. Это, однако, не сопровождалось соответствующим ростом показателей лабильности мышц. Вероятно, способность производить высокую частоту движений сзязана с подвижностью нервной системы. Максимальный темп движений зависит от способности центров антагонистических мышечных групп быстро переходить из состояния возбуждения в торможение и из состояния торможения в возбуждение. Выносливость Измерителем выносливости является время, то предельное время, в течение которого возможно осуществление мышечной деятельности данной формы и данной интенсивности. Поясним это определение. Предположим нам нужно измерить выносливость в беге у двух лиц. Для этого мы должны дать им задание бежать со строго одинаковой и постоянной скоростью так долго, как они могут. Более выносливым окажется тот, кто сможет поддерживать данную скорость бега дольше, чем другой. Продолжительность любой работы зависит от утомления. Утомление, развивающееся по ходу работы, стре- мится уменьшить ее продолжительность. Падение работоспособности в процессе работы, доходящее до отказа продолжать работу, есть следствие утомления. Однако существует и различная сопротивляемость действию факторов утомления. Эта сопротивляемость утомлению и является выносливостью. Чем больше выносливость, тем позже начнется утомление, тем успешнее будет происходить борьба организма с утомлением, тем меньше будет снижаться работоспособность по ходу работы, тем продолжительнее может быть сама работа. Разные формы и разные интенсивности мышечной деятельности обладают различным утомляющим действием (Я. А. Эголинский). Для характеристики выносливости разных лиц важно оценивать эту выносливость в строго одинаковых условиях, т. е. задавать испытуемым одну и ту же по форме и по интенсивности физическую нагрузку. Единственная переменная величина, то есть то, чем испытуемые, совершающие данную работу, будут отличаться, это - продолжительность работы. Время, измеряющее продолжительность задаваемой мышечной деятельности, должно являться единственной переменной величиной для того, чтобы оно могло быть использовано как мерило выносливости. Рассмотрим в свете сказанного показатели выносливости при различных формах мышечной деятельности. Выносливость в статических усилиях. Под статическими усилиями понимают поддержание мышечного напряжения при отсутствии движения. Выше мы уже рассматривали проявление напряжения в подобных изометрических условиях, когда описывали показатели мышечной силы. Максимальное мышечное напряжение не может длиться сколько-нибудь большое время. Оно всегда кратковременно. Как показывают опыты Н. Н. Гончарова, мышечное напряжение при больших сопротивлениях, оказываемых движению, в течение нескольких десятых долей секунды достигает своего максимума и, не удержавшись на этом максимуме даже секунды, немедленно начинает снижаться. Вероятнее всего, неспособность удерживать максимальное мышечное напряжение в течение даже короткого времени есть следствие торможения, в которое впадают двигательные клетки при их максимальном возбуждении. Возбуждение настолько велико, что едва оно достигло своего максимума, как немедленно возникает запредельное торможение. В результате из общего ансамбля возбужденных двигательных элементов сразу выпадают те элементы, которые легче всего тормозимы, в которых запредельное торможение возникает раньше всего. Естественно, что величина мышечного напряжения при этом должна снизиться. Для того, чтобы мышечное напряжение могло быть продолжительнее, величина его должна быть ниже максимальной. Чем меньше величина мышечного напряжения, тем продолжительнее оно может быть, тем позже, надо думать, наступит в соответствующих двигательных центрах состояние запредельного торможения. Продолжительность статического усилия является, таким образом, функцией от величины самого усилия. Характер этой функциональной зависимости в ее графическом выражении виден на рис. 44. Как показывает рисунок, между предельной продолжительностью статичес-. кого усилия и величиной усилия отношения обратные. При этом продолжительность усилия увеличивается в большей степени, нежели уменьшается величина усилия. Правое колено этой кривой является поэтому более пологим, чем крутое левое колено. Нижняя часть правого колена, т. е. самая пологая часть кривой, показывает, что при каких-то малых усилиях, но еще далеких от нуля, продолжительность усилия может быть очень большой. Это - область тонических мышечных напряжений. Мышечный тонус - это безусловнорефлекторный процесс, обеспечивающий поддержание естественных поз, положений тела и его звеньев. Тонические напряжения обладают чрезвычайно малой утомительностью, поэтому могут поддерживаться неопределенно долгое время. Очевидно, для испытания выносливости такие статические усилия, которые по величине своей приближаются к естественным тоническим напряжениям, непригодны. Равным образом нельзя для испытания выносливости в статических усилиях пользоваться максимальными усилиями или близкими к ним. Невыгодность использования таких величин для характеристики выносливости определяется чрезвычайно малой продолжительностью подобных усилий. По-видимому, наиболее выгодными величинами мышечных напряжений для испытания выносливости к статическим усилиям окажутся такие напряжения, которые лежат где-то между зоной максимальных напряжений и тоническими формами деятельности. Для характеристики выносливости в статических усилиях чаще используются величины мышечных напряжений, составляющих примерно половину от максимальной мышечной силы. Впервые такой прием использовали французские исследователи Фессар, Ложье и Нуэль. Они предлагали испытуемым показать сначала на динамометре максимальную силу сжатия. Аппарат представлял собою резиновую грушу, наполненную ртутью; при сжатии груши кистью руки ртуть поднималась по вертикальной стеклянной трубке. Затем предлагали поднять ртуть до половины максимальной величины и удерживать ее на этом уровне как можно дольше. Время поддержания половинного усилия принималось за показатель выносливости. Оказалось, что эта величина совершенно не зависит от силы испытуемого. Иной раз более выносливым оказывался более сильный, а иной раз и более слабый. Никакой корреляции между показателями силы и выносливости не обнаружилось. Это же подтвердилось в нашей лаборатории и в исследованиях ряда авторов (Шейдин, Розенблат и др.). Естественно задаться вопросом, отражает ли данный показатель выносливость именно данной мышечной группы, т. е. тех мышц, которые ведают сжатием кисти. С этой целью были проведены исследования в нашей лаборатории над спортсменами различных специальностей. Мы предполагали, что наибольшие показатели будут обнаружены у гимнастов, борцов и штангистов, а наименьшие - у бегунов, пловцов. Однако предположения не подтвердились. Различия сказывались подчас в силе мышц, но не в выносливости. Это также говорит об отсутствии связи между показателями силы и выносливости. Выше было сказано, что продолжительность какой-либо непрерывной мышечной деятельности зависит, в основном, от двух факторов: утомления и выносливости. Выносливость была нами охарактеризована как способность преодолевать утомление. Поэтому важно знать, какие физиологические процессы лежат в основе утомления при статическом усилии. Одно время очень распространенным было следующее объяснение утомлению, наступающему при статических усилиях. В отличие от «динамической работы», в которой сокращения мышц чередуются с расслаблениями, статическое усилие представлялось как непрерывное мышечное сокращение. Это в какой-то мере сказывается на кровоснабжении мышцы. При динамической работе чередование сокращений с расслаблениями действует на движение крови через мышцу наподобие насоса. Когда мышца сокращается, она выжимает кровь в вены, а когда расслабляется, вбирает в себя кровь из артерий. Выше мы определили
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату